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In this paper, we investigate the existence of positive solutions for the singular sixth-order differential system
with three variable parameters
u® = Qu+ f(t,u,0), 0<r<1
—09 + AW +B(1)¢" +C(t)p = pg(t,u.u”), 0<r<1
u(0) = u(1) =u"(0) = u" (1) =0,

9(0) = o(1) = 9"(0) = ¢"(1) = 9 (0) = (1) = 0,
where [ > 0 is a constant, and the nonlinear terms f, g may be singular with respect to the time and space
variables. Using a fixed point theorem in cones and an operator spectral theorem we give an new existence
result for singular differential system. The existence of the positive solution depends on L, i.e. there exists a

positive number I such that if 0 < u < [, the boundary value problem has a positive solution.
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1. Introduction

Boundary value problems for ordinary differential equations can be used to describe a large number of chemical, biological
and physical phenomena. The existence of positive solutions for such problems has become an important area of investigation in
recent years. It is well known that the bending of an elastic beam can be described with fourth-order boundary value problems.

An elastic beam with its two ends simply supported, can be described by the fourth-order boundary value problem

u® (@) = fle,u@),u" (1), 0<r<1, (1)

u(0) =u(1) =u"(0) =u"(1) =0. (2)

Existence of solutions for problem (1) was established for example by Gupta [1,2], Liu [3], Ma [4], Ma et. al. [5], Ma and Wang
[6], Aftabizadeh [7], Yang [8], Del Pino and Manasevich [9], RP Agarwal et.al. [10,11,12] (see also the references therein). (see
also the references therein). All of those results are based on the Leray-Schauder continuation method, topological degree and
the method of lower and upper solutions.

Recently, Wang and An [13] studied the existence of positive solutions for a second-order differential system by using the

fixed point theorem of cone expansion and compression.



It is well known that the deformation of the equilibrium state, an elastic circular ring segment can be described by a boundary
value problem for a sixth-order ordinary differential equation. However, there are only a handful of articles on this topic.

In this paper we shall discuss the existence of positive solutions for the sixth-order boundary value problem

u® = Qu+ f(t,u, @), 0<r<1

—0O 1AW +B(1)@" +C(1)p = ug(t,u,u”), 0<t<1

9(0) = ¢(1) = ¢"(0) = ¢"(1) = p'*(0) = o™ (1) =0, 3)

where [ is a positive parameter, A(t), B(t),C(t),D(t) € C[0,1], D(¢) > 0and f(t,u, @) : (0,1) X [0,4o0) X [0+00) —> (0, +o0)
and g(z,u,v) : (0,1) x (0,400) X (—o0,0) — (0, +o0) is continuous. In fact as we will see below one could consider in Section 2
and 3 f(t,u, @) = f1(t) fo(t,u, @) with fo(t,u, @) : [0,1] X [0,+e0) X [0, +00) — (0,40) and f; : (0,1) — (0, +e0) is continuous,
provided

1 rl
/ / K(1,7)K(7,s) fi(s)dsdT < oo;
0 Jo

here K is as defined in Section 2. Moreover, our hypotheses allow but do not require g(¢,u,v) : [0,1] X (0,400) X (—e0,0) —
(0,+4o0) to be singular at u = 0, and at v = 0. The existence of the positive solution depends on u, i.e. there exists a positive
number & such that if 0 < u <, the boundary value problem (3) has a positive solution. For this, we shall assume the following

conditions throughout:
(H1) a = sup,c(o A(t) > —m? b= infycjo,11B(t) > 0, ¢ = sup,¢)o 1 C() <0, 7% +an* — b? + ¢ > 0, where a,b,c € R,
a=M+A+A3> —ﬂz,b =M —VA—AA3>0,c=A4 A3 <0 and 4, >0> A, > —7'[270 <A< —A.

Assumption (H1) involves a three-parameter nonresonance condition.

2. Preliminaries

Let Y=C[0,1]and Y; ={u €Y :u(t) >0, r€]0,1]}. It is well known that Y is a Banach space equipped with the norm

l[ullg = sup,e o,y [u(?)]-
We denote the norm ||u||, by

leelly = max {lully., f|u", } -

It is easy to show that Z = {u € C?[0,1] : u(0) = u(1) = 0} is complete with the norm |[ul|, and [[ul|, < [july+ [ [ly < 2]ull,



Set X = {u e C*[0,1]: u(0) = u(1) = u"(0) = u”(1) = 0} . For given x >0 and v > 0, we denote the norm |-||,, , by

Il = sup {0+’ @] + Vi) }, wex.
t€[0,1]

We also need the space X equipped with the norm

July = max { el ] }-

In [11], it is shown that X is complete with the norms |-, ,, and ||u/|4, and moreover Vu € X, |lully < [|u"[ly < Hu(“)HO.

We will investigate the existence of positive solutions for problem (3) by the following fixed point theorem of cone expansion

and compression of norm type:

Lemma 1 ([14]). Let E be a real Banach space and let P C E be a cone in E. Assume Qp, Q) are open subset of £ with
0 €Q, Q, C Qp,andlet T : PN (ﬁz\Ql) — P be a completely continuous operator such that either

() || Tu|| < ||ull, v € PNOL; and ||Tul|| > ||u||, u € PNILy; or

(i) || Tul| > |jull, u € PNIQ; and || Tu|| < |jul|, u € PNIQ;.

Then T has a fixed point in PN (Q,\Q;) .

Firstly, we will transform the problem (3) into a new form.

For h € Y, consider the following linear boundary value problem:

7(p(6>+a(P(4)+b(P”+C(p:h(t)? 0<t< 1

9(0) = (1) = ¢"(0) = ¢"(1) = p¥(0) = p¥(1) =0, @)
where a, b, c satisfy the assumption
m®+ant—br’+c>0 (5)

and let ' = 7% 4+ an* — bn? + c. The inequality (5) follows immediately from the fact that I' = 7° + an* — bx®> + ¢ is the
first eigenvalue of the problem —@(®) +a@®) + 5" 4+ cop = Lo, P(0) = ¢(1) = ¢”(0) = ¢"(1) = @ (0) = (1) = 0 and
¢1(t) =sin 7t is the first eigenfunction, i.e. I'> 0. Because the line /; = {(a,b,c) : n° +an* — bn® + ¢ = 0} is the first eigenvalue
line of the three-parameter boundary value problem —@(® +a@® +b¢" +cp =0, p(0) = (1) = " (0) = ¢” (1) = ¢ (0) =
(p(4)(1) =0, if (a,b,c) lies in [}, then by the Fredholm alternative the existence of a solution of the boundary value problem (4)

cannot be guaranteed.

Let P(A) = A2+ BA — o where B < 272, > 0. It is easy to see that equation P(A) = 0 has two real roots 1,4y =
-B+ /ﬁ2+4a . 2 . . .
——5———, with 4 > 0 > 24, > —7x”. Let A3 be a number such that 0 < A3 < —A,. In this case, (4) satisfies the following
decomposition form:

2 dZ 2

g T T R) (- tA)e, 0<i<L (6)

—0® +ap® +bp" +cp = (

It is obvious that a = A; + A, + A3 > —7'[2,[? =M — A3 — 43 > 0,c = L1453 <O.



Suppose that G;(z,s)(i = 1,2,3) is the Green function associated with
—¢"+ 29 =0, u(0)=u(1)=0. (7

We need the following lemmas.

Lemma 2 ([14]). Let @; = +/|Ai], then G;(¢,s)(i = 1,2,3) can be expressed as
sinh @ sinh @; (1 — )

o sinho ,0<r<s<1
. ; sinh w;
(i) when 4; > 0,G;(1,s) = sinh w-slssinh (O'l(l —1)
St ,0<s<t<1
; sinh @; -

. tH(l—s), 0<t<s<1
(ii) when A; = 0,K(z,s) = G;(¢,s) =
s(1—1), 0<s<r<1

sin @;z sin @; (1 —s)
g2 , _ @; sin @
(iii)when —m* < A; < 0,G(¢,s) sin @;s Sin a)i(l —1)
- , 0<s<r<1
@; S1n ;

o

<r<s<l1

)

Lemma 3 ([14]). G;(¢,s)(i = 1,2,3) has the following properties:

(i) Gi(t,s) >0, Vr,s€(0,1);

(ii) Gi(t,s) < CiGi(s,s), Vt,s €[0,1];

(iil) G;(t,s) > 6:G;(t,1)Gi(s,s), Vi,s €[0,1];

(iv) |K(t1,s) — (tz, 8)| <2\t — 10|, Vt1,02,5 €10,1];
where C; = 1,8, = ifA>0,Ci=1,8=1,if ,; =0,C; = § = wisinw;, if —7m% < A; <O0.

bl[lh(l) ) sma) ’

Proof. It can be easily seen that (i), (ii) and (iii) are satisfied. Next, we check that (iv) is satisfied. In fact, for#; <1, <s, or
s <t <1, itis easy to know that |K(t1,s) — K(f2,s)| < |t1 — 12| .

Similarly, for #; < s <t,, we have
|K(t1,5) —K(t2,9)| < |s(1 =) —t1 (1 —5)| < |s(t1 —t2) +s— 11| < 2|11 —12].

This proves that (iv) is satisfied.
This finishes the proof. O

In what follows, we shall let D; = jol Gi(s,s)ds

Now, since
©) 4 0@ 1 po ’ d’ d’
-0 +ap™ +b" +cop = (d2+)h)( —= +t M) (-5 +43)¢p
t dt dt
d> d? d?
= (- dt2+7tz)( dt2+7tl)( d2+/13)¢ h(t), )

the solution of boundary value problem (4) can be expressed by

:/01/01/0161(t,v)Gz(v,s)G3(s,T)h(r)drdsdv, t€10,1]. ©)

Thus, for every given & € Y, the boundary value problem (4) has a unique solution ¢ € C®[0, 1] which is given by (9).



We now define a mapping Q : C[0,1] — C[0,1] by

(Oh)(1) = /0 l /0 1./0. i (6.)Go(v,5)Ga (5, D) h(2)ddsdv, 1€ [0,1]. (10)

Throughout this article we shall denote Qh = ¢ the unique solution of the linear boundary value problem (4).

Let us introduce the following notation:

—~ 1 1 ,l
Oh = /0 /0 /0 C1G1(v,v)Ga (v,5)Ga (s, T)h(T)d Tdsdv. 0

Lemmad. 0:Y — (X,||-,,,) is linear and completely continuous where y = 41 +43,v =443 and [|Q < D.

Proof. The proof of completely continuous is similar to the proof of Lemma 6 in [15], so we omit it. Next we will show that
Q]| < D,. Assume that 2 € Y and ¢ = Qh is the solution the boundary value problem (4). It is clear that the operator Q maps Y
into X. Now forall Vh € Y, = Qh € X, (0) = ¢(1) = ¢”(0) = ¢" (1) = ¢ (0) = @) (1) = 0. Using (8) it is easy to see that

1 1
—q>”+/1,»<p:/0 /0 G;(1,)Ge (v, T)h(T)dTdv, 1€ 0,1]. (12)

and

1
<p(4>—(/1,-+7tj)<p”+7t,-/l,»<p:/o G (t,v)h(v)dv, 1€ 0,1]. (13)

where i, j,k=1,2,3 and i # j # k.

We will now show ||Qthv <D ||hlly,VheY, where x = A+ A3 >0,v =A1A3 > 0. For this, Vi € Y, let ¢ = Qh, and by
Lemma 3, ¢ € X NY,. The equality (12) with the assumption A, < 0 implies that ¢” < 0. Similarly, the equality (13) with the
assumptions A, + A3 < 0 and A,A3 <0 implies that (p(4> >0.

From (13) with y =4, +A3 >0, v=A4;43 > 0and ¢ >0, ¢” <0, ¥ >0 we immediately have

1
\(p“”(t)\+x|<p”(t)!+VI<p(t)l=<p<4)—(7u+7ts)<p”+/llka<p=/0 Go(t,v)h(v)dv, t€[0,1]. (14)

Forany heY,leth=h; —hy, o1 = Thy, @, = Thy, where hy,hy are the positive part and negative part of &, respectively. Let
@ = Th, then @ = @; — @,. From the above, we have ¢; > 0, ¢/ <0, (pi(4) > 0,i = 1,2, and the following equality holds:

1 A~
0 0] + (1 +20) [0/ O] + Mal0)| = [ Galt.v)(v)av =Hhi, 1€ (0,1], i=1.2 (15)

So, from (15), we have

[P0+ (1 +2) [ (0] + M2 o )] = [ 0f (1) - 0 1)

+A+23) [0 (1) = 93 ()] + X123 @1 (1) — 2(1)]

IN

(|0 O]+ +23) |0l O] + M2 o1 (1))



+ (’(pé‘”(t)‘ + (M +43) |97 (1) + M As |‘P2(’)|)

= Hhy +Hhy = H 1| < Dy |[|hl[lo = D2 ||l -

Thus [|Qhl[, , < D2 |k, and hence [|Q|| < D,. R

We consider the existence of a positive solution of the second equation of (3) (the function ¢ € C®(0,1)NC*[0, 1] is a positive
solution of the second equation of (3), if ¢(t) > 0,7 € [0,1], and @ # 0). It is easy to see that the second equation of (3) is

equivalent to the following boundary value problem:

—09 +ap") +b" +cp = — (A(t) —a) ) — (B(t) = b) 9" — (C(t) =) ¢

+ug(t,u,u”). (16)

For any ¢ € X, let

(Go)()] = = (A(t) —a) 9 — (B(1) =) 9" — (C(1) — ) .

The operator G : X — Y is linear. By Lemma 4 and Corollary 10, V¢ € X, t € [0, 1], we have

[(Go)(1) < [-A(1) +B(1) = C(t) — (—a—b—0)]|[@lly

< K[loll4 <K[|@]ly.v

where K = max;cpo 1) [A(t) +B(t) = C(t) — (—a+b—c)], x =+ A3 > 0, v =243 > 0. Hence ||Go||, < K||¢][, ,, and so
|G| < K. Also @ € C*[0,1]NC®(0,1) is a solution of (16) iff ¢ € X satisfies ¢ = Q (G +hy), where h (t) = ug(t,u,u") i.e.

peX, (I-0G)p=0hm. a7

The operator I — QG maps X into X. From ||Q|| < D, together with ||G|| < K and condition DK < 1, and applying the
operator spectra theorem, we find that (7 — QG)_1 exists and bounded. Let L = D)K.

Let H = (I — QG)~'Q. Then (17) is equivalent to ¢ = Hh;. By the Neumann expansion formula, H can be expressed by
H=(I+0G+..4+(0G)"+...) 0=0+(0G)Q+...+(0G)" O+ .... (18)

The complete continuity of Q with the continuity of (I — QG)~! guarantees that the operator H : ¥ — X is completely continuous.
Now Vh € Y, , let @ = Qh, then € X NY,, and ¢” <0, ¢ >0.

Thus we have
(G)(t) = — (A(t) —a) oY) — (B(t) = b) @" — (C(t) =) ¢ > 0, 1 €[0,1].
Hence

YheYy, (GOh)(r)>0, 1€0,1] (19)



and so (QG) (Qh) (t) = Q(GQh) (r) >0, t €10,1].
It is easy to see [15] that the following inequalities hold: VA € Y,

W (@) > (HR (1) > (1) (1), re0.1], o)

moreover,

[(HR)[lo < @nllo- 2D

i
1-L
For any u € Y, , it is easy to see that ¢ € C*[0,1]NC® (0, 1) being a positive solution of the second equation of (3) is equivalent

to ¢ € Y, being a nonzero solution of

@(t) = nHg(s,u(s),u”(s))(t)- (22)
Obviously, H : Y, — Y, is completely continuous.

Thus inserting (22) into the first equation of (3), we have

u (1) = () Hg(s,u(s),u” () (t) + f (¢, u(t), kHg (s, u(s),u” (5)) (1)),

u(0) =u(1) =u"(0) =u"(1) =0. (23)

Now we consider the existence of a positive solution of (23). The function u € C*(0,1)NC?[0, 1] is a positive solution of (23),

ifu(t) >0,7r€[0,1],and u # 0.

Then the solution of (23) can be expressed as

u(t) = /0 1 /0 K1) K (2,5) u(s)Hg (v, u(v) i (v))(s) dsd e+

1l
—l—/o /0 K(t,7)K(7,s) f(s,u(s), uHg(v,u(v),u” (v))(s))dsdr. (24)

We recall that Z = {u € C*[0,1] : u(0) = u(1) =0} is complete with the norm |[ul|, = max {|[ul|,||«”||,} and using Lemma
8 and Corollary 9, we have ||u||, = ||u”||, . Throughout this paper, we use the Banach space (Z, ||u|,) to solve the problem (23).

Set
P= {M €Z, u(t) ZK(tat) ”M”Ov 7uﬂ(t) ZK(tat) ||u”||ov re [Oal]}v

where K(t,¢t) =t(1—1t), t €[0,1].
Note, P is a cone in Z. For R > 0, write Bg = {u € C?[0,1] : ||u||, < R}.

It is easy to see that if u € P than



—u"(t) > o ||lu"]|,, t€ [iﬂ (25)

_ 3
where o = T

We now define a mapping T : P — C[0, 1] by

Tu(t) = u /O 1 /0 Kt 7 K (2.5 u(s)Hg (0w, dsde+

1 1
+ / / K(t,2)K(T,5) f(s,u(s), tHg(t,u,u")) dsd-. 26)
0 JO

Lemma 5. Let u € P. Then the following relations hold:
(@) (Tu)(t) > K(t,t)||Tul|, forr € [0,1], and
(b) —(Tu)"(t) > K(t,1)||Tu" ||, for ¢ € [0,1].

Proof. For simplicity we denote

I= /.1/01 /OlK(‘L'7 T)K(t,s)u(s)q(s)dsdt+
-l-/ol/OlK(T,T)K(T,s)h(s)dsdT,

J= u/olK(s,s)u(s)q(s)ds—&—/OlK(s,s)h(s)ds7

and

q(s) = Hg(t,u,u")(s), h(s) = f(s,u(s), uHg(t,u,u")(s)).

From Lemma 3 it is easy to see that

K(t,0)] <Tu(t) <I andt € [0,1] (27)

K(t,t)J < —(Tw)"(t)<J, t€]0,1] (28)

Using (27-28), we have

[Tully <1, and ||—(Tw)"||, <7,



hence

(Tu)(t) > K(t,1)||Tul|, forr € [0,1] and

—(Tu)"(1) > K(t,1)||Tu"||, fort € [0,1].

lo

This finishes the proof. O

Throughout this paper, we assume additionaly that the continuous function f(¢,u, @) : (0,1) x [0,+0) X [0400) — (0, +o0)
satisfies

(H2)
ft,uv) < fi(t) fo(wv), t€(0,1), u,veR?,

where f1 : (0,1) — (0,+0) and f3 : [0, +o0) — (0, +o0) is continuous, R* = [0,+0), R~ = (—o0,0].

Moreover the function g(z,u,v) : [0,1] x (0,+e0) X (—e0,0) — [0, +o0) satisfies

(H3) There exists an a > 0 such that g(z,u,v) is nonincreasing in 4 < a and |v| < a for each fixed 7 € [0,1] i.e. if —a < vy <
vi <0and 0 < uj <up then g(t,ui,vy) > g(t,uz,v2).

(H4) There exists an function g; (¢, w) : [0, 1] X (0, 4e0) — [0, +e0) such that g; (¢, w) is nonincreasing in u < a for each fixed
t€[0,1], i.e. if 0 < wy <w; then g(r,wy) > g(t,w2)

and each fixed 0 < r<a

1
0< / g1(s,rs(1 —5))ds < eo.
0

So, we assume additionaly that the function g(#,u,v) satisfies
gltyu,v) <gi1(t,u+|v|), t€[0,1], u€(0,+), veE (—o,0).

Let us introduce the following notations:

D = /(;l /OIK(T,T)K(r,s)dsdr, Dy = /0.l K(s,s) fi(s)ds,
1,1 !
Dz:/o /0 K(t,7)K(7,s)f1(s) dsdr, D3:/0 K(t,7)dr,

3 3 3 3 3
I (3 (% (3 [z 1
Ds = /] : ﬁ : /. ! ﬁ ! ﬁ " K(5, DK (5,5)G1 (5,9) G2 (v,2)Gi (z,x)dxdzdvdsdr,
1 4 7 4 4



10

33003
D¢ = ﬁ4 /14 /14 G1(v,v)G2(v,2)G3(z,x)dxdzdv.
i 71 /a

Py

Lemma 6. Let (H1),(H2),(H3) and (H4) hold. Then for all u € PN Bg/B, where r < a < R the following hold

(Tu)(0) < D3 ullg My +Ds. sup fo(TEu(s) g, u)(),
s€(0,1)
and
—(Tu)" (1) < T D3 Jullg M, + Dy sup fo(Euls)Hg(vuu)(5)).
- s€(0,1)
where

1,1l
M, :/ / / -C1G1(w,w)Ga(w,2)G3(z,v)g1 (v, rK (v,v))dvdzdw+
o Jo Jo

1 1 1
+swp sup [ [ [1C1GI0mw)Ga(w2)Ga(zv)g(vx. p) dvdza.
x€(0,R] pe[r,R] /O JO JO

ullp < ||u”||, and by Corollary 9,

Proof. It is easy to see that D; < D3, and D, < Dy4. Letu € PQER/Br, then by Lemma 8,
llull, = [|u”||y- Thus r < ||u”||, < R. Also since u € P we have —u” (t) > K(t,1) ||u"||,, u(t) > K(t,t)]||ul|y, and u(r) + [u" (t)] >

rK(t,t), t € 10,1].
By Lemma 1. and (H3) — (H5) we have

Tu(t) = /.L/Ol/OIK(I,T)K(T,s)u(s)Hg(v,u,u")(s) dsdt+
+Al ./01K(t,T)K(T,S)f(s,u(s),[JHg(v’u’u”)(s))dsdf
<5 /01 / K (6, 1) K(2,5) u(s) 0g (v, u(v), ") (5)) dvdsd+

+/01/01K(t>T)K(T’S)f(s’M(S)’“Hg(v,u(\/),u”)(s))dsdq;:

- lﬁﬁ/ol/(;IK(t,r)K(T,S)M(S)/OIAI /

u(v)+u" (v)|<a



-Gy (s,w)G2(w,2)G3(z,v)g(v,u(v),u” (v)) dvdzdwdsdt+

g seoxeae [ ]

V) (v)|>a

-G1(s,w)Ga2(w,2)G3(z,v)g(v,u(v),u" (v)) dvdzdwdsdt+
1l
[ [ KCDKE) fs.ts). g vu(0) il () ds

Sttph freoxeomof ) f

‘M// ‘Sa

-C1G1 (w,w)G2(w,2)G3(z,v)g1(v,rK(v,v))dvdzdwdsdt+

//Ktr ‘cs||u\|o// sup sup /
l_L xEORpErR

(v)+u(v)|=a

-G1(s,w)G2(w,2)G3(z,v)g (v, x, p) dvdzdwdsdt+
1 1
+ [ [ KK 06) Sl Hgl(v), ") (s)) dsde

it [ ruomcon [

(v)+u" (v)|<a

-C1G1(w,w)G2(W,2)G3(z,v)g1 (v, rK (v,v))dvdzdwdsdt+

1 .
—i—L/ / K(t,7)K(t,s ||u\|0/ / sup sup
1—-LJo Jo xe(0,R] pe| rR

(v)+u" (v)|za

-G1(s,w)G2(w,2)G3(z,v)g(v,x, p) dvdzdwdsdt+

11



[ [ KK A6, dsdr sup (a0 g0 u.4)(5)

s€(0,1)

< 1ﬁiL/01/011<(T,T)K(T7S)||u||0/01/01/01'

-C1G1(w,w)G2(w,2)G3(z,v)g1(v,rK(v,v))dvdzdwdsdt+

1

TR
+7/ / K(t,7)K(t,s ||u||o/ / sup sup
L—=LJo Jo x€(0,R] pe[rR)

C1G1(w,w)Ga(w,2)G3(z,v)g(v,x, p)dvdzdwdsdt+

[ [ kDK@ A, dsdr swp p(E a0 5)

s€(0,1)

< LoD Jully+ D2 sup fo(Eu()Hg0mu(v), ) (5)

~1-L 5€(0,1)
< TE DM, ullg+ Dy sup fo(Eu(s) Hg(vu(v), ") (5)),
5€(0,1)

and similarly we also have

1 rl
(') < 755 [ [ K@K s)dsdz o+

1
+ [ K956 )dsds sup ol B He v, u(v),u")(5))

u(s)Hg(v,u(v),u”)(s)).

< Dy |lullyM, +Dy sup fo(

—1-L se(,)”  1—L

This finishes the proof. O

Lemma 7. T(P) CP and T : PN (Bg/B;) — P is completely continuous.

12
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Proof. First, we prove that T(P) C P. To do this, let u € P, then we define mapping 7 : P — C2[0,1] by (26). Then for any
u € P, it is clear that

1
(Tw)" (1) = —p /O K(t,5) u(s)Hg(v,u,u")(s)ds

—/01K(t,s)f(&u(s),,qu(v,u,u”)(s))ds <0. (29)

By Lemma 3,

Tu(t) > K(t,0) |Tully, 1€ [0,1]

and

—(Tw)" (1) > K(1,0) || (Tw)"]|, 1 € [0,1].

Hence T(P) C P.
We recall that

N 1,1 gl
Oh — /0 /O /0 C1G1(v,v)Ga(v,5)Gs3 (s, T)h(t)dTdsdb. (30)

Let us introduce the following notation:

N 1 1 gl
N, = Og) (7,7K (7, 7)) = /0 /0 /0 C1G1 (v.v)Ga(v,5)Gs (5, )1 (7, rK (7, 7)))d Tdsdv. 31)

Let V C PN (Bg/B;) be a bounded set. Then there exists a d > 0, such that sup{||u||, :u €V} =d.
First we prove T(V) is bounded. Since ||ul|, = max{|lul|,,|[u”||o}, we have u(r) + |u”"(t)| < [Jull, + ||u"||, < 2d, and
|pu(t)Hg(v,u(v),u” (v))| < l‘f—LHuHoégl(V, rK(v,v)) = {£:dN, for all 1 € [0,1]. Let My = sup{f>(w) : w € [0, {4 dN,]}. Now,

from Lemma 3 and Lemma 6, we have for any u € V and ¢ € [0, 1] that

\Tu(t)| =| /0 l /0 K1) K (5,5) u(s)Hg (v, u(v),u (v)) dvdsd

+/01/01K(t»’L')K(Tas)f(sab‘(s),lng(v,u(v),u"(v)))dsd‘c|

U
1-L

< D3 ||ul|g My + Dy szlp Frluu(s)Hg(v,u(v),u” (v)))
s€(0,1

)



14

DsdM, DsdM,
< “ 3 4Dy sup fo(uu(s)Hg(v,u(v),u"(v))) < HE3dM, +MyDy. (32)
1-L s€(0,1) 1-L

We have a similar type inequality for |(7T«)" (¢)|. Therefore 7'(V') is bounded.
Next, we prove that 7'(V) is equicontinuous. Now, from Lemma 3 and Lemma 6, we have for any u € V and any #;,1, € [0, 1]

that

(Tu)(0) — (Tu)(2))
<u / / K (11,7) — K (12,7)| K(2.5) u(s)Hg(v,u(v),u") () (s) dsd+
b [ K2~ K02, ) K (2,5)5(5) H 0,0, () ) s
<o [ [ K7 Ko 1) Kz s)dsae ully 1 mk
+ / / K (11,7) — K (12,7) | K (7.5) f1(5) fatu(s) Hg (v.u(v) " (v))) dsdT

1 1
<u2ly —t /K ,8)d —M,
<u2ly 2|0 (SY)SHMHOI_L +

o1 1
+2Md|f1—f2|/ /K(&S)fl(s)deT
Jo Jo

< 2(uD3dM +MyDas) |t —12].

We have a similar type inequality for |(Tu)" (1) — (Tu)" ().
Therefore T (V') is equicontinuous.

Next, we prove that 7' is continuous. Suppose u,,u € PN (Bg/B,) and ||u, — u||, — 0 which implies that u, () — u(t),u, (t) —

»7'n

" (t) uniformly on [0,1]. Similarly for f(t,u,v) < fi(¢) f2(|lu| + |v]), follun(t)|+ |ul(t)]) = f2(Ju(t)]| + |u”(¢)|) uniformly on

[0,1] and g;(,u,(t)) — g1(¢,u(z)) uniformly on [0, 1]. The assertion follows from the estimate

|Tun(t) — Tu(t)|
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1 1
< u/o /0 K(t,7)K(7,s) | un(s)Hg(v,u,(v), ) (v)) — u(s)Hg(v,u(v),u" (v)) | dsdt+

b [ [ KRR 5)1106) | o H (), 00) o5 g )" () | ds,

and the similar estimate for |(Tu,)" () — (Tu)"(¢)| by an application of the standard theorem on the convergence of integrals.
The Ascoli-Arzela theorem guarantees that 7 : P — P is completely continuous.

This finishes the proof. O
Lemma 8. If u(0) = u(1) = 0 and u € C?[0, 1], then ||ul|, < [|u"||,, and so, ||ul, = [lu"|,-

Proof. Since u(0) = u(1), there is a & € (0,1) such that «'(a) = 0, and so '(¢) = [, u”"(s)ds, t € [0,1]. Hence |u/(2)] <
Sl (s)| ds < fy [u”(s)|ds < |[u"]lo, ¢ € [0,1]. Thus |ju||o < ||u"||,- Since u(0) = 0, we have u(r) = [ u/(s)ds, ¢ € [0,1], and
so [a(t)] < i 1 (5)|ds < - Thus lully < 4/l < 1"}l - Since [, = max { [l [ulo} and [l < [, we obtain
that [ull, = 1" .

This finishes the proof. O
Corollary 9. Let r > 0 and let u € dB, N P. Then |Jul|, = ||u"|,=r.

Corollary 10. Vu € X, |Jullo < [|u”]|o < [|u'®|o.

3. Main results

Theorem 1. Let (H1),(H2),(H3) and (H4) hold. Assume that the following condition holds
(H5)
H(w)

limsup ——= < ¢y,
w—0T

liminf min  inf
b relf Fjuc0te) @

and
g(t,u,v)

liminf min  inf = oo,
[v[—o0 te[%%]uG[O,‘Foo) |V|

where ¢| and c; is positive real number.
Then there exists u* > 0, such that if u € (0, u*], then problem (3) has at least one positive solution.
Proof.
We divide the rather long proof into three steps.
(D) Firstly, we will prove that the first part of assumptions (i) of Lemma 1 is satisfied.
To do this, by (H5), there exist 0 < r < a such that
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Hw)<cw, Ywel0,r]. (33)

Letu € dB, NP, by Lemma 8, ||ul|, < ||u”||, and by Corollary 9, ||ul|, = ||u"||,, then we have —u" (r) < ||u”||, = r and u(r) <
llullg <r, Vte[0,1]. Also since u € P we have —u”(t) > K(t,1)||u"|y, u(t) > K(t,1)||ully, and u(t) + [u”"(t)| > rK(t,t), t €

[0,1]. Let N, = Qg1 (v,rK (v,v)) and 0 < p < min{1gE, Nr<D11_+Lc102 1.

We now show that

0 < pu(t)Hg(v,u(v),u"(v)(t)) <r, Vte|0,1].

To see this, since y < lg—r[‘ and by (20), we have

1

L 0ga().u (1))

pu(s) Hg(v,u(v),u” (v))(s) < pl|ullo

1 -
< wr——Qg1(v,rK(nv)) < ———0g1 (v, rK(v,v)) =

1-L

So, using by (33) we have
So(w u(s)Hg(v,u(v),u” (v))(s)) < e1 (pu(s)Hg(v,u(v),u"(v))(s)) -

Thus, by Lemma 3, (H1),(H2),(H3) and (H4), we have

1 rl
Tu(t) :'LL/O /O K(t’T)K(T’S)M(S)Hg(VaM(V),M//(V))(s)dsd'z,ur
+/01/01K(t’T)K(T’S)f(s’u(s)"qu(Vv”(V),M”(V))(S))dsd’t

1 rl
< [ [ KK () g et ut). ()5 dsde+

h

1 rl
+ /0 /0 K(T,7)K(7,5)fi(s) f2(1t u(s)Hg(v,u(v),u" (v))(s))dsdt
1 rl
< [ [ KRR lullg Qelvsu) ' () (5) dse+

1 1
tei /0 /0 K(2, 0)K(7,5)fi (s)u(s) Ha (v, u(v), u" () (s)dsdt



[ KK () lull O30:05). ) s)dsd+

1 rl
verpt [ [ K DK (906 lull Q50:u(r) ' () (s)dsds

1
< L/ / K(7,7)K(7,s)dsdt|ull, N+
1—LJo Jo

+c

-1 1
1 ﬁL/o /0 K(7,7)K(7,5)f1(s) [ullyNdsdT

UN, (D1 +c1Ds)

< B o < Jully, € 9,0, 1 0,1,

Consequently,

| Tully < llully < [|u"[l,,  YuedB,NP
We have a similar type inequality for ||(Tu)"||o:
[(Tw)"|lo < ||u"||,, ~ Vu€IBNP.

This proves one of assumptions appearing Lemma 1.

(I) Secondly, we will prove that the second part of assumptions (i) of Lemma 1 is satisfied.

To do this, by condition (H4) there exists R, > 0 such that

13
flt,u,w) >cow, Yue R™, w>R,, t€ {474].

R

| 2
Ue301 K2 Dg

Let us choose ¢3 > ——-. Then by condition (H5), there exists R; >

c3iioDs > 0 such that,

13
glran) > bl Ve R, b =R e 3.3

LetR > max{%‘,a}. Letu € dBRNP, ie. |[u"||, = R. Thus, using by (25) we have

Ifllll’lﬂ —u'(t)>0o Hu"”o =0R >R, Vuec dBgrNP.
reld,3
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(34)

(35)



It is easy to verify that

pHg(v,u(v),u" (v))(s) > uQg(vu(v),u” (v))(s)

>4 /1 ! A : A 4 G (5,)Ga(0,2)G (2,002 o)1 (1)l
> /1 : /i : A e (5,9)Ga (1,2)G3 (2,x)c3Ry dxdzdv

> 1esR18,Gy (s, ) A : A : A G ()G (0,2)G (2, 3)dndad

13
> uc3R 6 mm Gi(s,s)Dg = Uc3R161KaDg > Ry, s € [4 4]

v€[4 7

161 (s,).

where K> = min__,

3
s€lz.3

Then, by Lemma 3, (H1) and (HS5), we have

—u / / K(5 u(s)Hg (v, u(v),u" (v) (s) dsd+
+/01/01K(%,’L’)K(’L‘,s)f(s,u(s)7qu(v,u(v),u”(v))(s))dsdr
>u/ / K S OK(T,5) uls)He (v u(v), u (v))(s) dsdT+

[ [ RGOK () F o) wH(v) " () 5)) dsd

> 7RG OK (29 sl uHgu).' () (5) dsd s

T)K(t,s)Hg(v,u(v),u’ (v))(s))dsdt

3

> eott /. : ﬁ : K(%,T)K(T,S)Qg(v,u(v),u”(v))(s))dsd’c

18
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3

3 3 3

- PRI

KoK [ [ ] 616620206 e x)gln u(o). ' () dvdadv dsde
4 7 s

3 3 3 3 3

I s

> caespl /1 ! /] "K(5, DK (5,5) /. ! [ ! /1 ! G1(5,v)Ga(v,2)Ga (2, 0) | (x) | dxdzdvdsdt
4 4 4 4

3 3 3

i (3 31

4/14 /141(( T7)K(7,5)G1(5,v)G2(v,2)G3(z,x)dxdzdvdsdt
i

" 4 % .
> o'l [ [ >

I

> cae3ptaDs|u”lo = [lu” o,

SO
1
(Tu)(3) = |u'lo. Ve IBRNP.

Consequently,

" llo < 1 Tullg < ||(Tu)" Vu € dBrNP. (36)

lo-

(II) Finally, we will prove that 7 : PN (Bg\B,) — P is a completely continuous operator. By Lemma 7, the Ascoli-Arzela
theorem guarantees that 7 : PN (Bg\B,) — P is a completely continuous.

Then due to Lemma 1, by (35) and (36) inequality we see that the problem (4) has at least one positive solution.

This finishes the proof. O

4. Conclusionss

This paper investigates the existence of positive solutions for a nonlinear sixth-order differential system using a fixed point
theorem of cone expansion and compression type of norm type. The nonlinear terms may be singular with respect to the time
and space variables. The problem comes from the deformation analysis of an elastic circular ring segment in the equilibrium

state. The results obtained herein generalize and improve some known results including singular and non-singular cases.
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