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In this study, we first introduce sequences in which they generalize Fibonacci and Lucas sequences, called
generalized Fibonacci and generalized Lucas and Horadam sequences. After that, by using them, we establish
their generalized matrix sequences. We investigate the properties of these sequences such as Binet formulas,
some different types of generating functions, sum formulas. We present some important relationships among

generalized Fibonacci, generalized Lucas, Horadam matrix sequences.
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I. INTRODUCTION AND PRELIMINARIES

Since Fibonacci wrote his book called Liber Abaci at the beginning of the thirteenth century, his intriguing sequence has
fascinated mathematicians through the years not only for its inherent mathematical riches but also for its applications in art,
nature, architecture. So there are many papers concern about special second-order sequences such as Fibonacci, Lucas, Jacob-
sthal, Jacobsthal Lucas, Horadam, Pell, Pell Lucas, etc. The elements of the Fibonacci sequences are obtained by adding the
two previous terms, beginning with the values fy = 0, f; = 1. The ratio of two consecutive elements of the Fibonacci sequence
is called Golden Ratio. It is important for almost every research area. The Lucas sequence {/,},. Was generated by chang-
ing initial conditions of the Fibonacci sequence are terms of the sequence {2,1,3,4,7,...},defined by the recurrence relation
I, =1l,—1 +1,—» for n > 2. Because of the importance of special integer sequences, the researchers generalize them by different
methods such as changing initial conditions, adding new parameters to recurrence relations. You can see the generalizations
of special integer sequences in all of our references. Our first three references are about generalized Fibonacci and Horadam
sequences which are some of the oldest researches. In [1,2,4,8], the authors examined the properties of generalized Fibonacci
polynomials. In [5] the authors investigated some properties of the Horadam polynomial sequence. In [6] the authors defined
generalized k— Horadam sequences and gave some properties by using determinants. In [7], the author gave some combinatorial
identities involving generalized Fibonacci- Lucas by defining a special matrix. T. Koshy wrote a book called Fibonacci and
Lucas Numbers with Applications in 2001.

In this paper, we give the relationships among generalized Fibonacci, generalized Lucas, and Horadam numbers, and some
basic properties of them such as Binet formula generating functions, D’ocagne, Catalan. Then by using these sequences we

generate matrix sequences of them and construct some formulas for these sequences.

Definition 1 Let n > 0 any integer and p, q are real numbers, and p* +4q > 0. The generalized Fibonacci {u, (p,q)} gener-

neN»



alized Lucas {v, (p,q)},cy and Horadam numbers {h, (p,q)},cy are defined by the following recurrence relations respectively

un (P,q) = pun—1(p,q) +qua—2(p,q), (uo(p,q) =0, u1(p,q) =1) (1.1)
Vi (P:9) = Pva-1(p,q9) +qvn—2(p,q), (vo(p,q) =2, vi(p,q) = p)
b (p,q) = Phu—1(p,q) +qhn—2(p,q), (ho(p,q) = a, hi(p,q) = b)

The relations among these sequences are

Vn = Pln +2qup—1 = Un41 +quin—_1,
(P* +4q)un = pvn+2qvy1,
Up = UpVn,
hy = buy +qau, i,

(p* +49)hy = (bp +2aq)vy +q(2b — ap)vy_1,

W2 —qud = PVl —4(—f1)n+1
n+1 — qUp p2+4q

Theorem 2 Binet Formula enables us to state generalized Fibonacci, generalized Lucas, and Horadam numbers. The Binet

Formulas for the generalized Fibonacci, generalized Lucas, Horadam are given by
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Proof. The first part of the proof can be made by substituting n = 0,1 in the equation u, = c{7} + c»75. The other parts of the
proof can be made by using the relations between the sequences. For example,
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Theorem 3 (Catalan Property)
2 n—r_2
Up—rUptr — Uy = — (_Q) u,

n—r_12

VarVur = vy = (P +4q) (=9)" "]
hporhn—r — hﬁ = - (b - arz) (b — arl) (—q)nir u%



Theorem 4 (D’ ocagne Property)

UnmUn+1 — UpUpm+] = (_Q)n Um—n
ViVl — VaVmal = — (p2 —|—4q) (—q)" Vin-n

hmhn+l - hnhm+1 - (*Q)n_l (bhmﬂH»l - ahm7n+2)

Theorem 5 (Generating Functions)
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ih o a+t(b—ap)
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II. GENERALIZED FIBONACCI, GENERALIZED LUCAS AND HORADAM MATRIX SEQUENCES

In this section, generalized Fibonacci {U, (p,q)},cn » generalized Lucas {V,, (p,q)},cn, Horadam {H, (p,q)},cnymatrix

sequences are defined by carrying to matrix theory generalized Fibonacci, generalized Lucas and Horadam sequences.

Definition 6 For any integer n > 1, the generalized Fibonacci matrix sequence is defined by

Un+1(P,q) = pUn (P:q) + qUn—1 (P, q) 2.1
L . 10 p 1
with initial conditions Uy = Uy =
01 q 0

The generalized Lucas matrix sequence is defined by

Vst (P,q) = pVa (P.q) +qVa1 (P, q) (2.2)
2 242
with initial conditions Vy = P V= P 1 p
29 —p a  2q

The Horadam matrix sequence is defined by

Huy1(p,q) = pHy (p,q) +qHn-1(p,q) (2.3)

o .. b a pb+qa b
with initial conditions Hy = JH =

qa T gb  qa



Theorem 7 Generalized Fibonacci {U, (p,q)},cy » generalized Lucas {V, (p,q)},cn» Horadam {H,(p,q)},cy, matrix se-

quences can be demonstrated by using generalized Fibonacci, generalized, Horadam number sequences as the following

U u v v h, h
Un _ n+1 n ’ Vn _ n+1 n 7 Hn _ n+1 n . (2.4)

quy qup_1 QVn qVp—1 qhy qhp_

Proof. The proofs are obtained by the mathematical induction method. m

Theorem 8 For any integer m,n > 0, the generalized Fibonacci matrix sequence has the following properties:

up=u, (2.5)

Um+n =UnUn (26)

Proof. The proofs are made by the mathematical induction method. For the proof of (2.6), let n = 0, then you can easily see that

the statement is verified. Let that is true forn < N.Forn =N +1

Un+N+1 = pPUnsN + qUminN-1
= pUnUn +qUUy-1
= Un(pUN +qUn-1)
=UnUn+1-

Corollary 9
Untm = Uplnt1 + GUpm—1Un
Proof. By the equality of matrices for the elements of (1,2), it’s easily seen. ®

Theorem 10 For any integer m,n > 0, the relations between generalized Fibonacci and generalized Lucas sequences are ob-

tained as
U1 +qUp 1 =V, (2.7)
(P* +4q)Uy = pVy +2qV (2.8)
H, =bU, +qaU,_ (2.9)
(P* +4q)H, = (bp +2aq)Vy+q(2b — ap)V,—i (2.10)
Vi1 = ViU, (2.11)
UnVit1 = Vas1Un (2.12)

Proof. For the proof of (2.7), let k = 1, the statement is true:

2 2
+ 0 +29 p
Us 4+ qUp = prap + i = P =V

ar q 0 q ar  2q



Let us suppose the formula is true until k. We want to show that it is also true forn =k +1 :

Us42 + qUx = pUpq1 + qUx + q(pUs—1 + qUr—2)
= p(Uis1 +qUi—1) +q(Ux +qUi2)

=pVi+qVi-1 = Vi

For the proof of (2.8), we also use the induction method. For N = 0, the truth of the statement is easily seen. For N = 1, we get

2
+2 1
Vs = ViU — rt2p) (p
qap 2q q0
3 2
[ pH3qp P72 [ v w2
ar*+24*  qp 2 qvi

Let us suppose the formula is true until N. Forn =N + 1,

ViUny1 = ViUnU; =V Uy

[ vN+2 v p 1
qVN+1 QYN qg 0
VN+3 VN42

4qVN+2 qVN+1
For the proof of (2.12), if we consider the initial condition Uy = I, then it appears

UnV1U, = Uy, (pUy +2qUo) Uy
= (pUn+1 +2qU,)U,
= pUnsnt1 +2qUinsn
= pU,U,Uy, +2qU, U,
= (pU,U + +2qU,Up) Uy
= (pU1 +2qUo) UpUp
= Vit 1Un

The other proofs are made by following similar procedures. m

Theorem 11 For any integer n > 0, the following equalities are verified:

H, = pbU, +2aqU,_1, (2.13)
Hn+m = Uann (214)
i1 = H{"Upp. (2.15)

Proof. We only show the proof of (2.14). The other proofs are made by following similar procedure. For n = 0, the truth of the

statement is easily seen. Let that is true forn < m. Forn =m+1,

H, i m+1 = pHysm +qHyim—1 = pU,H,, +qU,Hy 1 = Uy, (pHm + qu—l) =U,Hp11.



Theorem 12 (Binet Formulas)

U — U U —nrU
Un:< 1= 0))‘?—( 11— O)rg7 (2.16)
ry—nr ry—nr
Vo —nV, Vo —rV,
Vo1 = (W) i — (2”1> e (2.17)
ry—nr rn—nrn
H> —rnH, H>, —rH
Hy.f = (2r21) i (W) . (2.18)
ry—nr ry—nr
Proof.
(U1—F2Uo> N (U1—F1Uo> "
— In—\————|n
ry—nr ry—nr
B r’ll p—r 1 rg p—r 1
imn qg —n n-n q —n
T T et () B
n-n q(ri —r3) —rn (=)

= Un
The second and third formulas can be clearly seen by using the identities V,,+1 = V1U,, Hy+1 = HU,. m

Theorem 13 (Generating Function)

o U U1 — pU

Y U = otUi—p 20)", (2.19)
= 1—px—gx

= — pVi

Y v = Yt = pVo)x Wi —p g)x, (2.20)
= 1—px—gx

= H| + H — H|+ H —

Y Hux' = (1-1—0(1’1]?)> P <1—|—0(r2p)) . (2.21)
e r—n rL—r

Theorem 14 The determinants of generalized Fibonacci, generalized Lucas, Horadam matrix sequences and by using these

determinants, the Simpson formulas for generalized Fibonacci, generalized Lucas, Horadam number sequences are as

detU, = (_q)n7

Un i1ty —uZ = (—1)"¢""".

detVoi1 = q(p* +4q) (—q)",

Vn+1Vn—-1 — Vi = (P2 +4Q) (_q)n'

detH, 1 = (pbga+ 2 +b%q) (—q)",

hystha—1 —hy = (pbq + qa® +b*) (—q)".



Proof. The proofs are made by using the properties of (2.4), (2.5), (2.9), (2.11).

detU; = —q and detU, = detU} = (—q)" = q(uns1tn_1 — u2).

detV,; = detV; detU, = ¢ (p* +4q) (—q)".
| ]

Theorem 15 For n > 0, some relationships between the sequences {U,(p,q)} ey and {Va(p,q) } e are given as
Vi = ViU,
Vit = ViV,
Vone1 = UpVii1.
Proof. By using the property (2.11),
Vi =VartVan = ViUV1Uy = ViUs,
Vit = ViU = ViVilUzy = ViVas1,
Vanp1r = ViUzp = UpVit1.

|
Corollary 16

2 2 2

Vnt2 +C]Vn+1 = (P +4Q) U2n+3,
2 2

Vit T qVa1 = Vanid T qVany2,

Vont1 = Un1Vnt1 + GVnlip.
Proof. The proofs are seen by the equality of matrices in Theorem 15. m
Corollary 17 Forn > 0,
up o+ (1+ %) 2+ Pui_y > v
Vit (14 qz) Va1 + @V > Vanta +2qvania + ¢ van

Proof.

2 2
Uptl U 0
n+ n 2 1
qun quay [, || 0 7
2 2\ 2 2.2 2 2
un+1+(l+q )Mn+q Mn712r1n+r2n:v2n

Vi1 =VUy = (U2 + qUo) Uy = Upyz +qU,,.
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V%+2+ (1+q2) V2 +C] V > ( 2n+4+r§n+4) +2q (r%n+2+r§n+2) +q2 (r%n_,'_r%n)
= Vontd +2qVony2 +q2V2n

Theorem 18 For n > 0,the sum of the first n+ 1 terms of the generalized Fibonacci matrix sequence is obtained by

i e Unyr — 1+ quprt Uppo — 1 — ptyg + iy (222)
=0 P+‘1 Qi1 = @7l =4 qUns1 + Pty — quty +p — 1
Theorem 19 For m,n,k > 0, and m < n, the sum formulas for the generalized Fibonacci, the generalized Lucas, Horadam matrix

sequences are given as in matrix form

k] Un— (_Q)m Un-m+ (_q)m Um(kfl)Jrn = Unk+n
ZUmiJrn =

2.23
o (2.23)
kilv S Vi — (_Q)m Vim+ (_q)m Vm(k71)+n — Vink-+n (2.24)
mi+n — 1— Vi + (_q)m .
kilH o H, — (_q)mHn*m + (_q)mHm(kfl)Jrn — Hypen (2.25)
mi+n 1— Vi (*Q)m .
Proof. Let A = U'r 1 rizUO B= U'r 1 r‘rzUO then by using the Binet formula we get
k—1 k—1 ) )
ZUmi+n = ZAV'{”H’ —Bryn
i=0 i=0
1—rpk 1—rk
=Ar} L) g (2
I—r 1- rg1
Ar1 (l—r’”—r1 )"y mik ) Br} ( rm—rgnk—l-(—q)mr;"(k l))
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- (*Q)m (ArT(k*1)+” Br r (k 1)+”) (Arllnk+n 7Br§nk+n)
- L=vp+(=q)"
_ Un — (_q)m Un—m+ (_q)m Um(k71)+n = Unikn
1—vp+(—q)" .

Theorem 20 For m,n,k > 0, and m < n,

< 1 the generating function for the power of the generalized Fibonacci matrix

sequence is given as in matrix form
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Proof. Let ris odd. Then by using Binet form of U; and geometric series, we get

L agki

(arh —BA) ¥ =Y U =Y [z () ) <—Bra>""]

i=0 i=0 i=0 | k=0
VAW rekne (kor—k)
= Z L A" (—B) X:(rlr2 x)

k=0 i=0

~ (T k r—k 1
= AN(=B) " ——
,;)<k> 17r]1‘r2 kx

If we divide the sum into two parts contains the equal term in number, we have

r—k k
1—r""ryx

B f <r> ( l)k Arkak AkBrfk
0 \k 1—r" krkx 1—rryx
1 <r> ( | L Arkak_AkBrfk_i_ (AkBrfk r—krk _Arkakrllcrg—k)x
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Now, let r is even. If we divide the sum into two parts, we get
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You can find this property for the other matrix sequences by following the same operations. m
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Theorem 21 For m,n,k > 0, and m < n, the generating functions with a negative power for generalized Fibonacci, generalized



Lucas, Horadam matrix sequences are given as in matrix form

10

Uk U —x(=Ui+pUy)  Upp1x+qU, (2.26)
£ X2 —px—q & (¥ = px — q) ’
Ve Vitx(Va-pVi) Vit gVa (2.27)
=0 X —px—q X (= px—q)
iﬂ:szl‘i’x(HZ*le) B Hn+1x+an (2 28)
B X2 —px—gq a1 (x2 — px—q) .

Proof. We give the proof for only the generalized Fibonacci matrix sequence

k=0 k

i%* Uy — U i(ﬂ)k Ui —nly (3)"
xk r—r =\ x r—r X

o i U —r2U0 x”“ 111+1 U, —I’]U()
ot rn—rnr X—r r—nr

o

(U1 —rzU()) (x”“ —rq’—H) (x— r2)
_ 1 *(U]*I‘]U())(X'H“lfrgﬁl)(xfrl)
Cxt(x—rp)(x—r) r—r
o (Ll ) (142 =yt — a1 4 (—g) )

ry—nr

X" (x2—px—q) - (UI*VIUO) (xH2 — ] —xr’2’+1 +(—q) 1)

n+2 ((U1—nUp
u ( r—=ry

1 xn+l

U 7V%U07r1 U +F%U()

r—r

- m _x(<U17r2Uo> r?-&-l . (UI*VIUO

ry—r2 ry—nr2

_ Ui—nUp \ n _ (Ui—nlp
q(( r—nr rl r—r

7U1+F1U0> _

)%")
)7)

1
= [Upx""? —x"" (—U 4 pUp) — xUp 11 — qU,
xn(xz_px_q)[ 0 ( 1+p 0) XUn+1 — ¢ n]
_ XUp—x(=Ui+ply)  Un1x+qU,
- XP-pr—g X (x2 = px — q)

The other proofs is done by using the properties (2.9) and (2.11). m
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