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In this study, we first introduce sequences in which they generalize Fibonacci and Lucas sequences, called

generalized Fibonacci and generalized Lucas and Horadam sequences. After that, by using them, we establish

their generalized matrix sequences. We investigate the properties of these sequences such as Binet formulas,

some different types of generating functions, sum formulas. We present some important relationships among

generalized Fibonacci, generalized Lucas, Horadam matrix sequences.
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I. INTRODUCTION AND PRELIMINARIES

Since Fibonacci wrote his book called Liber Abaci at the beginning of the thirteenth century, his intriguing sequence has

fascinated mathematicians through the years not only for its inherent mathematical riches but also for its applications in art,

nature, architecture. So there are many papers concern about special second-order sequences such as Fibonacci, Lucas, Jacob-

sthal, Jacobsthal Lucas, Horadam, Pell, Pell Lucas, etc. The elements of the Fibonacci sequences are obtained by adding the

two previous terms, beginning with the values f0 = 0, f1 = 1. The ratio of two consecutive elements of the Fibonacci sequence

is called Golden Ratio. It is important for almost every research area. The Lucas sequence {ln}n∈N was generated by chang-

ing initial conditions of the Fibonacci sequence are terms of the sequence {2,1,3,4,7, ...},defined by the recurrence relation

ln = ln−1 + ln−2 for n≥ 2. Because of the importance of special integer sequences, the researchers generalize them by different

methods such as changing initial conditions, adding new parameters to recurrence relations. You can see the generalizations

of special integer sequences in all of our references. Our first three references are about generalized Fibonacci and Horadam

sequences which are some of the oldest researches. In [1,2,4,8], the authors examined the properties of generalized Fibonacci

polynomials. In [5] the authors investigated some properties of the Horadam polynomial sequence. In [6] the authors defined

generalized k− Horadam sequences and gave some properties by using determinants. In [7], the author gave some combinatorial

identities involving generalized Fibonacci- Lucas by defining a special matrix. T. Koshy wrote a book called Fibonacci and

Lucas Numbers with Applications in 2001.

In this paper, we give the relationships among generalized Fibonacci, generalized Lucas, and Horadam numbers, and some

basic properties of them such as Binet formula generating functions, D’ocagne, Catalan. Then by using these sequences we

generate matrix sequences of them and construct some formulas for these sequences.

Definition 1 Let n≥ 0 any integer and p,q are real numbers, and p2+4q > 0. The generalized Fibonacci {un (p,q)}n∈N, gener-



2

alized Lucas {vn (p,q)}n∈N and Horadam numbers {hn (p,q)}n∈N are defined by the following recurrence relations respectively

un (p,q) = pun−1 (p,q)+qun−2 (p,q) , (u0(p,q) = 0, u1(p,q) = 1) (1.1)

vn (p,q) = pvn−1 (p,q)+qvn−2 (p,q) , (v0(p,q) = 2, v1(p,q) = p)

hn (p,q) = phn−1 (p,q)+qhn−2 (p,q) , (h0(p,q) = a, h1(p,q) = b)

The relations among these sequences are

vn = pun +2qun−1 = un+1 +qun−1,

(p2 +4q)un = pvn +2qvn−1,

u2n = unvn,

hn = bun +qaun−1,

(p2 +4q)hn = (bp+2aq)vn +q(2b−ap)vn−1,

u2
n+1−qu2

n =
pv2n+1−4(−q)n+1

p2 +4q
.

Theorem 2 Binet Formula enables us to state generalized Fibonacci, generalized Lucas, and Horadam numbers. The Binet

Formulas for the generalized Fibonacci, generalized Lucas, Horadam are given by

un =
rn

1− rn
2

r1− r2
,

vn = rn
1 + rn

2,

hn =
(b−ar2)rn

1− (b−ar1)rn
2

r1− r2
.

where r1 =
p+
√

p2+4q
2 , r2 =

p−
√

p2+4q
2 and

r1 + r2 = p, r1− r2 =
√

p2 +4q, r1. r2 =−q.

Proof. The first part of the proof can be made by substituting n = 0,1 in the equation un = c1rn
1 + c2rn

2. The other parts of the

proof can be made by using the relations between the sequences. For example,

vn = un+1 +qun−1 = p
rn

1− rn
2

r1− r2
+2q

rn−1
1 − rn−1

2
r1− r2

=

(
p+ 2q

r1

)
rn

1−
(

p+ 2q
r2

)
rn

2

r1− r2
=

r1 p+2q
r1

rn
1−

r2 p+2q
r2

rn
2

r1− r2

=

r2
1+q
r1

rn
1−

r2
2+q
r2

rn
2

r1− r2
=

(
r2
1−r1r2

r1

)
rn

1−
(

r2
2−r1r2

r2

)
rn

2

r1− r2

= rn
1 + rn

2.

Theorem 3 (Catalan Property)

un−run+r−u2
n =−(−q)n−r u2

r

vn−rvn+r− v2
n =

(
p2 +4q

)
(−q)n−r u2

r

hn+rhn−r−h2
n =−(b−ar2)(b−ar1)(−q)n−r u2

r
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Theorem 4 (D’ ocagne Property)

umun+1−unum+1 = (−q)n um−n

vmvn+1− vnvm+1 =−
(

p2 +4q
)
(−q)n vm−n

hmhn+1−hnhm+1 = (−q)n−1 (bhm−n+1−ahm−n+2)

Theorem 5 (Generating Functions)

∞

∑
n=0

untn =
t

1− pt−qt2

∞

∑
n=0

vntn =
2− t p

1− pt−qt2

∞

∑
n=0

hntn =
a+ t (b−ap)
1− pt−qt2

II. GENERALIZED FIBONACCI, GENERALIZED LUCAS AND HORADAM MATRIX SEQUENCES

In this section, generalized Fibonacci {Un (p,q)}n∈N , generalized Lucas {Vn (p,q)}n∈N , Horadam {Hn (p,q)}n∈Nmatrix

sequences are defined by carrying to matrix theory generalized Fibonacci, generalized Lucas and Horadam sequences.

Definition 6 For any integer n≥ 1, the generalized Fibonacci matrix sequence is defined by

Un+1 (p,q) = pUn (p,q)+qUn−1 (p,q) (2.1)

with initial conditions U0 =

 1 0

0 1

 , U1 =

 p 1

q 0

 .

The generalized Lucas matrix sequence is defined by

Vn+1 (p,q) = pVn (p,q)+qVn−1 (p,q) (2.2)

with initial conditions V0 =

 p 2

2q −p

 , V1 =

 p2 +2q p

qp 2q

 .

The Horadam matrix sequence is defined by

Hn+1 (p,q) = pHn (p,q)+qHn−1 (p,q) (2.3)

with initial conditions H0 =

 b a

qa b−ap
q

 , H1 =

 pb+qa b

qb qa

 .
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Theorem 7 Generalized Fibonacci {Un (p,q)}n∈N , generalized Lucas {Vn (p,q)}n∈N , Horadam {Hn (p,q)}n∈N , matrix se-

quences can be demonstrated by using generalized Fibonacci, generalized, Horadam number sequences as the following

Un =

 un+1 un

qun qun−1

 , Vn =

 vn+1 vn

qvn qvn−1

 , Hn =

 hn+1 hn

qhn qhn−1

 . (2.4)

Proof. The proofs are obtained by the mathematical induction method.

Theorem 8 For any integer m,n≥ 0, the generalized Fibonacci matrix sequence has the following properties:

Un
1 =Un (2.5)

Um+n =UmUn (2.6)

Proof. The proofs are made by the mathematical induction method. For the proof of (2.6), let n = 0, then you can easily see that

the statement is verified. Let that is true for n≤ N. For n = N +1

Um+N+1 = pUm+N +qUm+N−1

= pUmUN +qUmUN−1

=Um(pUN +qUN−1)

=UmUN+1.

Corollary 9

un+m = umun+1 +qum−1un

Proof. By the equality of matrices for the elements of (1,2), it’s easily seen.

Theorem 10 For any integer m,n ≥ 0, the relations between generalized Fibonacci and generalized Lucas sequences are ob-

tained as

Un+1 +qUn−1 =Vn (2.7)

(p2 +4q)Un = pVn +2qVn−1 (2.8)

Hn = bUn +qaUn−1 (2.9)

(p2 +4q)Hn = (bp+2aq)Vn +q(2b−ap)Vn−1 (2.10)

Vn+1 =V1Un (2.11)

UmVn+1 =Vn+1Um (2.12)

Proof. For the proof of (2.7), let k = 1, the statement is true:

U2 +qU0 =

 p2 +q p

qp q

+
 q 0

0 q

=

 p2 +2q p

qp 2q

=V1
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Let us suppose the formula is true until k. We want to show that it is also true for n = k+1 :

Uk+2 +qUk = pUk+1 +qUk +q(pUk−1 +qUk−2)

= p(Uk+1 +qUk−1)+q(Uk +qUk−2)

= pVk +qVk−1 =Vk+1

For the proof of (2.8), we also use the induction method. For N = 0, the truth of the statement is easily seen. For N = 1, we get

V2 =V1U1 =

 p2 +2q p

qp 2q

 .

 p 1

q 0


=

 p3 +3qp p2 +2q

qp2 +2q2 qp

=

 v3 v2

qv2 qv1

 .

Let us suppose the formula is true until N. For n = N +1,

V1UN+1 =V1UNU1 =VN+1U1

=

 vN+2 vN+1

qvN+1 qvN

 .

 p 1

q 0


=

 vN+3 vN+2

qvN+2 qvN+1

 .

For the proof of (2.12), if we consider the initial condition U0 = I2, then it appears

UmV1Un =Um(pU1 +2qU0)Un

= (pUm+1 +2qUm)Un

= pUm+n+1 +2qUm+n

= pUnU1Um +2qUnUm

= (pUnU1 ++2qUnU0)Um

= (pU1 +2qU0)UnUm

=Vn+1Um

The other proofs are made by following similar procedures.

Theorem 11 For any integer n≥ 0, the following equalities are verified:

Hn = pbUn +2aqUn−1, (2.13)

Hn+m =UnHm, (2.14)

Hm
n+1 = Hm

1 Umn. (2.15)

Proof. We only show the proof of (2.14). The other proofs are made by following similar procedure. For n = 0, the truth of the

statement is easily seen. Let that is true for n≤ m. For n = m+1,

Hn+m+1 = pHn+m +qHn+m−1 = pUnHm +qUnHm−1 =Un(pHm +qHm−1) =UnHm+1.
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Theorem 12 (Binet Formulas)

Un =

(
U1− r2U0

r1− r2

)
rn

1−
(

U1− r1U0

r1− r2

)
rn

2, (2.16)

Vn+1 =

(
V2− r2V1

r1− r2

)
rn

1−
(

V2− r1V1

r1− r2

)
rn

2, (2.17)

Hn+1 =

(
H2− r2H1

r1− r2

)
rn

1−
(

H2− r1H1

r1− r2

)
rn

2. (2.18)

Proof. (
U1− r2U0

r1− r2

)
rn

1−
(

U1− r1U0

r1− r2

)
rn

2

=
rn

1
r1− r2

 p− r2 1

q −r2

− rn
2

r1− r2

 p− r1 1

q −r1


=

1
r1− r2

 p(rn
1− rn

2)− r1r2
(
rn−1

1 − rn−1
2

)
rn

1− rn
2

q(rn
1− rn

2) −r1r2
(
rn−1

1 − rn−1
2

)


=Un

The second and third formulas can be clearly seen by using the identities Vn+1 =V1Un, Hn+1 = H1Un.

Theorem 13 (Generating Function)

∞

∑
n=1

Unxn =
U0 +(U1− pU0)x

1− px−qx2 , (2.19)

∞

∑
n=1

Vnxn =
V0 +(V1− pV0)x

1− px−qx2 , (2.20)

∞

∑
n=1

Hnxn =

(
H1 +H0 (r1− p)

r1− r2

)
rn

1−
(

H1 +H0 (r2− p)
r1− r2

)
rn

2. (2.21)

Theorem 14 The determinants of generalized Fibonacci, generalized Lucas, Horadam matrix sequences and by using these

determinants, the Simpson formulas for generalized Fibonacci, generalized Lucas, Horadam number sequences are as

detUn = (−q)n,

un+1un−1−u2
n = (−1)nqn−1.

detVn+1 = q
(

p2 +4q
)
(−q)n,

vn+1vn−1− v2
n =

(
p2 +4q

)
(−q)n.

detHn+1 =
(

pbqa+q2a2 +b2q
)
(−q)n,

hn+1hn−1−h2
n =

(
pbq+qa2 +b2)(−q)n.
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Proof. The proofs are made by using the properties of (2.4), (2.5), (2.9), (2.11).

detU1 =−q and detUn = detUn
1 = (−q)n = q(un+1un−1−u2

n).

detVn+1 = detV1 detUn = q
(

p2 +4q
)
(−q)n.

Theorem 15 For n≥ 0, some relationships between the sequences {Un(p,q)}n∈N and {Vn(p,q)}n∈N are given as

V 2
n+1 =V 2

1 U2n,

V 2
n+1 =V1V2n+1,

V2n+1 =UnVn+1.

Proof. By using the property (2.11),

V 2
n+1 =Vn+1Vn+1 =V1UnV1Un =V 2

1 U2n,

V 2
n+1 =V 2

1 U2n =V1V1U2n =V1V2n+1,

V2n+1 =V1U2n =UnVn+1.

Corollary 16

v2
n+2 +qv2

n+1 =
(

p2 +4q
)

u2n+3,

v2
n+2 +qv2

n+1 = v2n+4 +qv2n+2,

v2n+1 = un+1vn+1 +qvnun.

Proof. The proofs are seen by the equality of matrices in Theorem 15.

Corollary 17 For n≥ 0,

u2
n+1 +

(
1+q2)u2

n +q2u2
n−1 ≥ v2n

v2
n+2 +

(
1+q2)v2

n+1 +q2v2
n ≥ v2n+4 +2qv2n+2 +q2v2n

Proof. ∥∥∥∥∥∥ un+1 un

qun qun−1

∥∥∥∥∥∥
2

2

≥

∥∥∥∥∥∥ rn
1 0

0 rn
2

∥∥∥∥∥∥
2

2

u2
n+1 +(1+q2)u2

n +q2u2
n−1 ≥ r2n

1 + r2n
2 = v2n

Vn+1 =V1Un = (U2 +qU0)Un =Un+2 +qUn.

∥∥∥∥∥∥ vn+2 vn+1

qvn+1 qvn

∥∥∥∥∥∥
2

2

≥

∥∥∥∥∥∥ rn+2
1 +qrn

1 0

0 rn+2
2 +qrn

2

∥∥∥∥∥∥
2

2
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v2
n+2 +

(
1+q2)v2

n+1 +q2v2
n ≥

(
r2n+4

1 + r2n+4
2

)
+2q

(
r2n+2

1 + r2n+2
2

)
+q2 (r2n

1 + r2n
2
)

= v2n+4 +2qv2n+2 +q2v2n

Theorem 18 For n≥ 0,the sum of the first n+1 terms of the generalized Fibonacci matrix sequence is obtained by

n

∑
i=0

Ui =
1

p+q−1

 un+2−1+qun+1 un+2−1− pun+1 +un+1

qun+1−q2un−q qun+1 + pqun−qun + p−1

 . (2.22)

Theorem 19 For m,n,k≥ 0, and m≤ n, the sum formulas for the generalized Fibonacci, the generalized Lucas, Horadam matrix

sequences are given as in matrix form

k−1

∑
i=0

Umi+n =
Un− (−q)m Un−m +(−q)m Um(k−1)+n−Umk+n

1− vm +(−q)m (2.23)

k−1

∑
i=0

Vmi+n =
Vn− (−q)m Vn−m +(−q)m Vm(k−1)+n−Vmk+n

1− vm +(−q)m (2.24)

k−1

∑
i=0

Hmi+n =
Hn− (−q)m Hn−m +(−q)m Hm(k−1)+n−Hmk+n

1− vm +(−q)m (2.25)

Proof. Let A = U1−r2U0
r1−r2

, B = U1−r1U0
r1−r2

, then by using the Binet formula we get

k−1

∑
i=0

Umi+n =
k−1

∑
i=0

Armi+n
1 −Brmi+n

2

= Arn
1

(
1− rmk

1
1− rm

1

)
−Brn

2

(
1− rmk

2
1− rm

2

)

=
Arn

1

(
1− rm

2 − rmk
1 +(−q)mrm(k−1)

1

)
−Brn

2

(
1− rm

1 − rmk
2 +(−q)mrm(k−1)

2

)
1− (rm

1 + rm
2 )+(−q)m

=

(Arn
1−Brn

2)− (−q)m (Arn−m
1 −Brn−m

2

)
+

(−q)m
(

Arm(k−1)+n
1 −Brm(k−1)+n

2

)
−
(
Armk+n

1 −Brmk+n
2

)
1− vm +(−q)m

=
Un− (−q)m Un−m +(−q)m Um(k−1)+n−Umk+n

1− vm +(−q)m .

Theorem 20 For m,n,k ≥ 0, and m ≤ n,
∣∣rk

1rk
2x
∣∣ < 1 the generating function for the power of the generalized Fibonacci matrix

sequence is given as in matrix form

∞

∑
i=0

U r
i xi =

r−1
2

∑
i=0

[
(−1)k

(
r
k

)
Ar−kBk−AkBr−k +(−q)k (AkBr−krr−2k

1 −Ar−kBkrr−2k
2

)
x

1+(−q)r x2− (−q)k (rr−2k
2 + rr−2k

1

)
x

]
, f or r is odd

∞

∑
i=0

U r
i xi =

r
2−1

∑
i=0

[
(−1)k

(
r
k

)
(AB)k Ar−2k−Br−2k +(−q)k (Br1)

r−2k− (Ar2)
r−2k

1− (−q)k Vr−2kx+(−q)r x2

]

+

(
r
r
2

)
A

r
2 (−B)

r
2

1− (−q)
r
2 x

f or r is even
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Proof. Let r is odd. Then by using Binet form of Ui and geometric series, we get

∞

∑
i=0

(
Ari

1−Bri
2
)r

xi =
∞

∑
i=0

U r
i xi =

∞

∑
i=0

[
r

∑
k=0

(
r
k

)(
Ari

1
)k (−Bri

2
)r−k

]
xi

=
r

∑
k=0

(
r
k

)
Ak (−B)r−k

∞

∑
i=0

(
rk

1rr−k
2 x

)i

=
r

∑
k=0

(
r
k

)
Ak (−B)r−k 1

1− rk
1rr−k

2 x

If we divide the sum into two parts contains the equal term in number, we have

∞

∑
i=0

U r
i xi =

r−1
2

∑
k=0

(
r
k

)(
Ak (−B)r−k

1− rk
1rr−k

2 x
+

Ar−k (−B)k

1− rr−k
1 rk

2x

)

=

r−1
2

∑
k=0

(
r
k

)
(−1)k

(
Ar−kBk

1− rr−k
1 rk

2x
− AkBr−k

1− rk
1rr−k

2 x

)

=

r−1
2

∑
k=0

(
r
k

)
(−1)k Ar−kBk−AkBr−k +

(
AkBr−krr−k

1 rk
2−Ar−kBkrk

1rr−k
2

)
x

1+(r1r2)
r x2−

(
rk

1rr−k
2 + rr−k

1 rk
2

)
x

=

r−1
2

∑
i=0

[
(−1)k

(
r
k

)
Ar−kBk−AkBr−k +(−q)k (AkBr−krr−2k

1 −Ar−kBkrr−2k
2

)
x

1+(−q)r x2− (−q)k (rr−2k
2 + rr−2k

1

)
x

]
.

Now, let r is even. If we divide the sum into two parts, we get

∞

∑
i=0

U r
i xi =

r
2−1

∑
i=0

(
r
k

)
Ak (−B)r−k

1− rk
1rr−k

2 x
+

Ar−k (−B)k

1− rr−k
1 rk

2x
+

(
r
r
2

)
A

r
2 (−B)

r
2

1− (−q)
r
2 x

=

r
2−1

∑
i=0

(−1)k
(

r
k

)
Ar−kBk

1− rr−k
1 rk

2x
+

AkBr−k

1− rk
1rr−k

2 x
+

(
r
r
2

)
A

r
2 (−B)

r
2

1− (−q)
r
2 x

=

r
2−1

∑
i=0

(−1)k
(

r
k

)
Ar−kBk +AkBr−k−

(
rk

1rr−k
2 Ar−kBk +AkBr−krr−k

1 rk
2
)

x

1− (−q)k (rr−2k
1 + rr−2k

2

)
+(−q)r x2

+

(
r
r
2

)
A

r
2 (−B)

r
2

1− (−q)
r
2 x

=

r
2−1

∑
i=0

[
(−1)k

(
r
k

)
(AB)k Ar−2k−Br−2k +(−q)k (Br1)

r−2k− (Ar2)
r−2k

1− (−q)k Vr−2kx+(−q)r x2

]

+

(
r
r
2

)
A

r
2 (−B)

r
2

1− (−q)
r
2 x

.

You can find this property for the other matrix sequences by following the same operations.

Theorem 21 For m,n,k ≥ 0, and m≤ n, the generating functions with a negative power for generalized Fibonacci, generalized
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Lucas, Horadam matrix sequences are given as in matrix form
n

∑
k=0

Uk

xk =
x2U0− x(−U1 + pU0)

x2− px−q
− Un+1x+qUn

xn (x2− px−q)
(2.26)

n

∑
k=0

Vk

xk =
x2V1 + x(V2− pV1)

x2− px−q
− Vn+1x+qVn

xn−1 (x2− px−q)
(2.27)

n

∑
k=0

Hk

xk =
x2H1 + x(H2− pH1)

x2− px−q
− Hn+1x+qHn

xn−1 (x2− px−q)
(2.28)

Proof. We give the proof for only the generalized Fibonacci matrix sequence
n

∑
k=0

Uk

xk =

(
U1− r2U0

r1− r2

) n

∑
k=0

( r1

x

)k
−
(

U1− r1U0

r1− r2

) n

∑
k=0

( r2

x

)k

=
1
xn

(
U1− r2U0

r1− r2

)(
xn+1− rn+1

1
x− r1

)
−
(

U1− r1U0

r1− r2

)(
xn+1− rn+1

2
x− r2

)

=
1

xn (x− r1)(x− r2)


(U1− r2U0)

(
xn+1− rn+1

1

)
(x− r2)

−(U1− r1U0)
(
xn+1− rn+1

2

)
(x− r1)

r1− r2



=
1

xn (x2− px−q)

 (
U1−r2U0

r1−r2

)(
xn+2− r2xn+1− xrn+1

1 +(−q)rn
1
)

−
(

U1−r1U0
r1−r2

)(
xn+2− r1xn+1− xrn+1

2 +(−q)rn
2
)


=
1

xn (x2− px−q)


xn+2

(
U1−r2U0−U1+r1U0

r1−r2

)
−

xn+1
(

r2U1−r2
2U0−r1U1+r2

1U0
r1−r2

)
−x
((

U1−r2U0
r1−r2

)
rn+1

1 −
(

U1−r1U0
r1−r2

)
rn+1

2

)
−q
((

U1−r2U0
r1−r2

)
rn

1−
(

U1−r1U0
r1−r2

)
rn

2

)


=

1
xn (x2− px−q)

[
U0xn+2− xn+1 (−U1 + pU0)− xUn+1−qUn

]
=

x2U0− x(−U1 + pU0)

x2− px−q
− Un+1x+qUn

xn (x2− px−q)

The other proofs is done by using the properties (2.9) and (2.11).
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