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We suggest a method of computing many functions in the same time by using many parallel quantum systems.

We use the Bernstein-Vazirani algorithm. Given the set of real values {a1,a2,a3, . . . ,aN}, and the function

g : R→ {0,1}, we shall determine the following values {g(a1),g(a2),g(a3), . . . ,g(aN)} simultaneously. By

using M parallel quantum systems, we can compute M functions g1,g2, ...,gM simultaneously. The speed of

determining the N×M values will be shown to outperform the classical case by a factor of N.
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Quantum mechanics [1–6] provides exact and frequently

remarkably accurate numerical predictions, as reported for

over a century. There has been a remarkable link in recent

decades between the quantum theory and information the-

ory, givin rise to the rich field of quantum information theory

(QIT), which novel proposals that outperform classical tasks

or simply have no classical counterpart [6].

One case that involves both quantum theory and informa-

tion theory that can be found in the foundations of the quan-

tum theory is the Leggett-type non-local variables theory [7],
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which has been experimentally explored [8–10]. These exper-

iments report that quantum theory does not accept a Leggett-

type non-local variables interpretation, although some contro-

versy remains around the conclusions and interpretations of

the experimental outcomes [11–13].

Applications of QIT also include the implementation of

quantum algorithms. One such case is provided for instance

by the Deutsch’s problem [14], first experimetally realized

on a nuclear magnetic resonance proof-of-principle quan-

tum computer [15]. Implementation of the Deutsch-Jozsa

algorithm on an ion-trap quantum computer has also been

achieved [16]. There have been, as well, several other at-
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tempts to use single-photon two-qubit states for quantum

computing. Oliveira et al implemented the Deutsch’s algo-

rithm with polarization and transverse electromagnetic spa-

tial modes as qubits [17]. Other achievements also include

single-photon Bell states preparation and measurement [18], a

decoherence-free implementation of Deutsch’s algorithm us-

ing single-photon and using two logical qubits [19] and, more

recently, a one-way quantum computing implementation of

the algorithm[20].

These achievements involving the Deutsch-Jozsa algorithm

are very well related to the so called Bernstein-Vazirani al-

gorithm [21, 22], which can be considered as an extended

version of the previous one. After these two algorithms, Si-

mon’s algorithm [23] was discovered, among others. There

has been an experimental implementation of a quantum algo-

rithm that solves the Bernstein-Vazirani parity problem with-

out entanglement [24]. Additionally, fiber-optics implemen-

tations of the Deutsch-Jozsa and Bernstein-Vazirani quantum

algorithms with three qubits have been realized [25]. Also,

a variant of the algorithm for quantum learning being robust

against noise has been introduced [26], as well as a quantum

algorithm for approximating the influences of Boolean func-

tions and its applications [27]. The Bernstein-Vazirani algo-

rithm has been also versatile in quantum key distribution [28]

and transport implementation with ion qubits [29].

In the present work we suggest a method of computing

many functions in the same time by using many parallel

quantum systems. We use the Bernstein-Vazirani algorithm.

Given the set of real values {a1,a2,a3, . . . ,aN}, and the func-

tion g : R → {0,1}, we shall determine the following val-

ues {g(a1),g(a2),g(a3), . . . ,g(aN)} simultaneously. By using

M parallel quantum systems, we can compute M functions

g1,g2, ...,gM simultaneously. The speed of determining the

N×M values will be shown to outperform the classical case

by a factor of N.

Let us suppose that we are given the following sequence of

real values

a1,a2,a3, . . . ,aN . (1)

Let us now introduce the function

g : R→{0,1}. (2)

One step is to determine the following values:

g(a1),g(a2),g(a3), . . . ,g(aN). (3)

Recall that in the classical case, we need N queries, that is,

N separate evaluations of the function (2). In our quantum

algorithm, we shall require a single query. Suppose now that

we introduce another function

f : {0,1}N →{0,1}, (4)

which is a function with a N-bit domain and a 1-bit range. We

construct the following function:

f (x)= g(a) · x =
N

∑
i=1

g(ai)xi(mod2)

= g(a1)x1⊕g(a2)x2⊕g(a3)x3⊕·· ·⊕g(aN)xN ,

xi ∈ {0,1}N ,g(ai) ∈ {0,1},ai ∈ R, (5)

where ai is a real value. Here g(a) symbolizes

g(a1)g(a2) · · ·g(aN). (6)

Let us follow the quantum states through the algorithm. The

input state is

|ψ0〉= |0〉⊗N |1〉. (7)

After the Hadamard transform on the state, we have

|ψ1〉= ∑
x∈{0,1}N

|x〉√
2N

[
|0〉− |1〉√

2

]
. (8)

Next, the function f is evaluated using

U f : |x,y〉 → |x,y⊕ f (x)〉, (9)
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giving

|ψ2〉=±∑
x

(−1) f (x)|x〉√
2N

[
|0〉− |1〉√

2

]
. (10)

After the Hadamard transform, using the previous equation

and (10) we can now evaluate |ψ3〉,

|ψ3〉=±∑
z

∑
x

(−1)x·z+ f (x)|z〉
2N

[
|0〉− |1〉√

2

]
. (11)

Thus,

|ψ3〉=±∑
z

∑
x

(−1)x·z+g(a)·x|z〉
2N

[
|0〉− |1〉√

2

]
. (12)

We notice

∑
x
(−1)x·z+g(a)·x = 2N

δg(a),z. (13)

Thus,

|ψ3〉=±∑
z

∑
x

(−1)x·z+g(a)·x|z〉
2N

[
|0〉− |1〉√

2

]
=±∑

z

2Nδg(a),z|z〉
2N

[
|0〉− |1〉√

2

]
=±|g(a)〉

[
|0〉− |1〉√

2

]
=±|g(a1)g(a2) · · ·g(aN)〉

[
|0〉− |1〉√

2

]
, (14)

from which

|g(a1)g(a2) · · ·g(aN)〉. (15)

can be obtained. That is to say, if we measure

|g(a1)g(a2) · · ·g(aN)〉 then we can retrieve the following val-

ues

g(a1),g(a2),g(a3), . . . ,g(aN) (16)

using a single query. All we have to do is to perform one

quantum measurement.

The speed to determine N values improves by a factor of

N as compared to the classical counterpart. Notice that we

recoiver the Bernstein-Vazirani algorithm when g : ai→ ai.

We suggest a method to compute M functions in the same

time as many parallel quantum systems. By using M parallel

quantum systems, we can compute M functions g1,g2, ...,gM

simultaneously. That is, we can retrieve the following values

g1(a1),g1(a2),g1(a3), . . . ,g1(aN), (17)

g2(a1),g2(a2),g2(a3), . . . ,g2(aN), (18)

· · ·

gM(a1),gM(a2),gM(a3), . . . ,gM(aN) (19)

In the case, we measure the following quantum state:

|g1(a1)g1(a2) · · ·g1(aN)〉⊗

|g2(a1)g2(a2) · · ·g2(aN)〉⊗

· · ·⊗ |gM(a1)gM(a2) · · ·gM(aN)〉. (20)

All we have to do is to perform one quantum measurement.

[30].

In conclusions, we have presented a generalization of the

Bernstein-Vazirani algorithm. And by using the new quantum

algorithm, we have suggested a new method to compute M

functions in the same time as M parallel quantum systems.

The speed of computing the N×M values will be shown to

outperform the classical case by a factor of N.
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