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We review non-classicality of quantum datum. We consider whether we can assign the predetermined “hid-

den” result to numbers 1 and −1 as in results of measurements in a thought experiment. We assume the number

of measurements is two. If we detect | ↑〉 as 1 and detect | ↓〉 as −1, then we can derive the Kochen-Speker

theorem. The same situation occurs when we use a finite-precision measurement theory that the results of

measurements are either 1− ε or −1+ ε .

PACS numbers: 03.65.Ud, 03.65.Ta

1. INTRODUCTION

The quantum theory (cf. [1–5]) is indeed successful phys-

ical theory. From the incompleteness argument of Einstein,

Podolsky, and Rosen (EPR) [6], a hidden-variable interpreta-

tion of the quantum theory has been as an attractive topic of

research [2, 3]. The no-hidden-variables theorem of Kochen

and Specker (KS theorem) [7] is very famous. In general,

the quantum theory does not accept the KS type of hidden-

variable theory. Greenberger, Horne, and Zeilinger discover

[8, 9] the so-called GHZ theorem for four-partite GHZ state.

And, the KS theorem becomes very simple form (see also

Refs. [10–14]). For the KS theorem, it is begun to research

the validity of the KS theorem by using inequalities (see

Refs. [15–18]). To find such inequalities to test the validity

of the KS theorem is particularly useful for experimental in-

vestigation [19].

Many researches address non-classicality of observables.
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And non-classicality of quantum state itself is not investi-

gated at all (however see [20]). Further, non-classicality of

quantum datum is not investigated very well. Does finite-

precision measurement nullify the Kochen-Specker theorem?

Meyer discusses that finite precision measurement nullifies

the Kochen-Specker theorem [21]. Cabello discusses that

finite-precision measurement does not nullify the Kochen-

Specker theorem [17]. We address the problem.

Here we ask: Can we assign definite value into each quan-

tum datum? We cannot assign definite value into each quan-

tum datum. This gives the very simple reason why Kochen-

Specker inequalities are violated in real experiments. Fur-

ther, our discussion says that we cannot assign definite value

to each quantum datum even though the number of measure-

ments is two. This gives the Kochen-Specker theorem in two

trials of measurements. These argumentations would provide

supporting evidence of the statement by Cabello.

In this paper, we review non-classicality of quantum da-

tum. We consider whether we can assign the predetermined

“hidden” result to numbers 1 and −1 as in results of mea-
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surements in a thought experiment. We assume the number

of measurements is two. If we detect | ↑〉 as 1 and detect | ↓〉

as −1, then we can derive the Kochen-Speker theorem. The

same situation occurs when we use a finite-precision measure-

ment theory that the results of measurements are either 1− ε

or −1+ ε .

2. THE KS THEOREM WITH PRECISION

MEASUREMENTS

We consider a value V which is the sum of data in some

experiments. The measured results of trials are either 1 or−1.

We assume the number of−1 is equal to the number of 1. The

number of trials is 2. Then we have

V =−1+1 = 0. (1)

First, we assign definite value into each experimental da-

tum. In the case, we consider the Kochen-Specker realism.

By using r1, r2, r1′ and r2′ , we can define experimental data as

follows r1 = 1, r2 =−1, r1′ = 1 and r2′ =−1. Let us write V

as follows

V = (
2

∑
l=1

rl). (2)

The possible values of the measured results rl are either 1 or

−1. The same value is given by

V = (
2

∑
l′=1

rl′). (3)

We change the label as l → l′. The possible values of the

measured results rl′ are either 1 or −1.

In the following, we evaluate a value (V ×V ) and derive a

necessary condition under an assumption that we assign defi-

nite value into each experimental datum.

We introduce an assumption that Sum rule and Prodct rule

commute [22]. We have

V ×V

= (
2

∑
l=1

rl)× (
2

∑
l′=1

rl′)

=
2

∑
l=1
·

2

∑
l′=1

rlrl′

≤
2

∑
l=1
·

2

∑
l′=1
|rlrl′ |

=
2

∑
l=1
·

2

∑
l′=1

(rl)
2

= 2((1)2 +(−1)2)

= 4. (4)

The inequality (4) can be saturated because the following case

is possible

‖{l|rl = 1}‖= ‖{l′|rl′ = 1}‖

‖{l|rl =−1}‖= ‖{l′|rl′ =−1}‖. (5)

Thus,

(V ×V )max = 4. (6)

Therefore we have the following assumption concerning the

Kochen-Specker realism

(V ×V )max = 4. (7)

Next, we derive another possible value of the product V ×

V of the value V under an assumption that we do not assign

definite value into each experimental datum. This is quantum

mechanical case.

In this case, we have

V ×V = 0. (8)

We have the following assumption concerning quantum me-

chanics

(V ×V )max = 0. (9)

We cannot assign the truth value “1” for the two assump-

tions (7) and (9), simultaneously. We derive the KS paradox.

Thus we cannot assign definite value into each experimental

datum. The number of data is two.
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3. THE KS THEOREM WITH FINITE-PRECISION

MEASUREMENTS

Next, we consider a value V which is the sum of data in

some experiments. The measured results of trials are either

1− ε or −1+ ε . We assume the number of −1+ ε is equal to

the number of 1− ε . The number of trials is 2. Then we have

V =−1+ ε +1− ε = 0. (10)

First, we assign definite value into each experimental da-

tum. In the case, we consider the Kochen-Specker realism.

By using r1, r2, r1′ and r2′ , we can define experimental data as

follows r1 = 1−ε , r2 =−1+ε , r1′ = 1−ε and r2′ =−1+ε .

Let us write V as follows

V = (
2

∑
l=1

rl). (11)

The possible values of the measured results rl are either 1− ε

or −1+ ε . The same value is given by

V = (
2

∑
l′=1

rl′). (12)

We change the label as l → l′. The possible values of the

measured results rl′ are either 1− ε or −1+ ε .

In the following, we evaluate a value (V ×V ) and derive a

necessary condition under an assumption that we assign defi-

nite value into each experimental datum.

We introduce an assumption that Sum rule and Prodct rule

commute [22]. We have

V ×V

= (
2

∑
l=1

rl)× (
2

∑
l′=1

rl′)

=
2

∑
l=1
·

2

∑
l′=1

rlrl′

≤
2

∑
l=1
·

2

∑
l′=1
|rlrl′ |

=
2

∑
l=1
·

2

∑
l′=1

(rl)
2

= 2((1− ε)2 +(−1+ ε)2)

= 4(1− ε)2. (13)

The inequality (13) can be saturated because the following

case is possible

‖{l|rl = 1− ε}‖= ‖{l′|rl′ = 1− ε}‖

‖{l|rl =−1+ ε}‖= ‖{l′|rl′ =−1+ ε}‖. (14)

Thus,

(V ×V )max = 4(1− ε)2. (15)

Therefore we have the following assumption concerning the

Kochen-Specker realism

(V ×V )max = 4(1− ε)2. (16)

Next, we derive another possible value of the product V ×

V of the value V under an assumption that we do not assign

definite value into each experimental datum. This is quantum

mechanical case.

In this case, we have

V ×V = 0. (17)

We have the following assumption concerning quantum me-

chanics

(V ×V )max = 0. (18)

We cannot assign the truth value “1” for the two assump-

tions (16) and (18), simultaneously. We derive the KS para-

dox. Thus we cannot assign definite value into each experi-

mental datum. The number of data is two.

4. CONCLUSIONS

In conclusions, non-classicality of quantum datum has been

investigated. We have considered whether we can assign the

predetermined “hidden” result to natural numbers 1 and −1

as in results of measurement in a thought experiment. The

number of trials has been twice. If we detect | ↑〉 as 1 and de-

tect | ↓〉 as −1, then we can have derived the Kochen-Speker

theorem. The same situation has occurred when we use a

finite-precision measurement theory that the results of mea-

surements are either 1− ε or −1+ ε .



18

Generally Multiplication is completed by Addition. There- fore, we think that Addition of the starting point may be supe-

rior to any other case.
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