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In this paper, a three species predator-prey model has been developed. Here we divide the prey population

into two subpopulations such as (i) juvenile prey and (ii) adult prey population along with only one predator

population. It is considered that only adult prey has the anti-predator behaviour. In this paper, two functional

responses of predator due to adult and juvenile prey have been introduced on the basis of ratio-dependency. Then

the existence condition and boundedness of solution of our proposed mathematical model have been discussed.

Also, the different equilibrium points and the stability condition of the system around these equilibrium points

have been analyzed. After that, the extinction condition of the prey and predator populations and the effect

of anti-predator behaviour on the predator population have been explored. The global stability condition of

the proposed system around the positive equilibrium point has been also discussed. Finally, some numerical

simulations have been given to test our theoretical results.
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1. INTRODUCTION

The study of interaction between species and their sur-

rounding natural environment is an important topic in

theoretical ecology. The systematic mathematical analysis

can lead to better understanding of such type of interactions.

Since the work of Lotka [4], various kinds of mathematical

models about prey-predator interaction [1,12,13,15,17] have

been explored to explain the relationship between prey and

predator.

It is natural that two or more species living in a com-
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mon habitant are often attach to one another by interacting in

several ways. In the literatures, the several mathematicians

and theoretical ecologists have contributed their different

conceptual notions about the growth rate of predator popula-

tion. Normally, the rate of prey consumption by an average

predator is known as functional response which can be clas-

sified as (i) prey dependent (ii) predator dependent and (iii)

multi species dependent. In prey dependent, the functional

response is affected by only prey population, in case of

predator dependent, functional response can be determined

by considering both predator and prey populations and in

multi species dependent the species other than the focal

predator and its prey influence the functional response. Tradi-

tionally in predator-prey mathematical models, the functional
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response has been considered depending upon density of

prey population only. In (1989), Arditi and Ginzburg [14]

suggested a ratio dependent functional response which is a

particular type of predator dependence. Here, the response

only depends on the ratio of prey population size to predator

population size. This is better than prey dependent functional

response for modelling predation. There are very few

number of literatures in mathematical prey-predator models

in which the ratio dependent functional responses have been

considered. In 2004, the ratio dependent functional response

was considered by Fan and Li [18]. After that, in Banerjee

[9] developed a prey predator model considering the ratio

dependent functional response. In these two papers, a ratio

dependency has been considered on Holling type II only.

There also some mathematical models [7,8,19] in which the

ratio-dependent functional response has been considered to

analyze those models.

Although biologists routinely label the animals as predators

or prey, the ecological role of individuals is often far from

clear. There are many examples [2,6,16] of role reversals in

predators and prey, where an adult prey attacks vulnerable

young predators. This implies that a juvenile prey that

escapes from predation and become adult and then it can kill

juvenile predators. The juvenile prey to adult predators results

in behavioral changes later in life: after becoming adult, these

prey kill juvenile predators at a faster rate than prey that had

not been exposed. Anti-predator adaptations are mechanisms

developed through evolution that assist prey organisms in

their constant struggle against predators. Throughout the

animal kingdom, adaptations have evolved for every stage

of this struggle. There are very few mathematical model [5]

in which anti-predator behaviours have been considered to

analyze the nonlinear system.

In this paper, a three species predator-prey (i.e., juve-

nile prey, adult prey and predator) model has been developed

mathematically where prey population is divided into two

subpopulations such as (i) juvenile prey (ii) adult prey pop-

ulation. The anti-predator behaviour property of adult prey

population has been introduced in our proposed mathematical

model. Here, a Holling type-IV functional response has been

used on the basis of ratio-dependency of prey and predator.

In this model the existence condition and boundedness of

solutions have been discussed. Also the stabilities of the

system around the different equilibrium points have been

discussed. Here, the extinction condition of the prey and

predator population has been derived and then the effect of

anti-predator behaviour on the predator population has been

also explored. Finally, some numerical simulations have been

given to support our theoretical results.

2. MODEL FORMULATION

It is known that in theoretical ecology there are many

researches about the dynamical behavior between predator

and prey. But, the study of anti-predator behaviour is very

important in ecology due to morphological changes and attack

of adult prey. Now, according to the model developed by

Tang and Xiao [5], it is seen that the growth rate of predator

population has been decreased by a anti-predator behavioral

term (ηxy) involving the densities of all prey populations.

But from the literature survey [2,6,16], it is seen that only the

adult prey can save itself from the attack of predator due to

its morphological changes. So in our proposed model, only

the adult prey has been considered to reduce the growth rate

of predators. Due to this reason, here the prey population

has been divided into two categories such as juvenile prey

and adult prey whose densities are x(t) and y(t) at time t.

Here, z(t) be the density of predator population at time t.

So, the anti-predator behavior should be ηyz where η is the

rate of anti-predator behaviour of adult prey to the predator

population.

Again, in population dynamics, the functional response

is very important to change the density of prey to be at-

tacked by predator per unit time. Now, for the traditional

predator-prey model, the functional response depends upon
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only density of prey population. But according to Berrymen

[3], the predator per capita growth rate should decline with its

density also. Therefore, to satisfy the above both criteria a

functional response should be a function of prey and predator

both. In this regard, the following functional responses of

predator for consuming juvenile prey and adult prey should

be considered as

β1xz
z2 + k1xz+ k2x2 and

β2yz
z2 + k3yz+ k4y2

respectively. It is also assumed that intrinsic growth rate of ju-

venile prey (r) is grater than the portion of juvenile prey who

becomes adult (β ). Hence, considering above realistic crite-

ria, a predator-prey model has been developed in this paper

which is as follows:
dx
dt

= rx(1− x
k )−βx− β1xz2

z2+k1xz+k2x2

dy
dt = βx−dy− β2yz2

z2+k3yz+k4y2

dz
dt = µβ1xz2

z2+k1xz+k2x2 +
µ1β2yz2

z2+k3yz+k4y2 −d1z−ηyz

 (1)

with nonnegative initial conditions x(0) ≥ 0,y(0) ≥ 0 and

z(0)≥ 0.

Here, the parameters involved in the proposed model are de-

scribed as follows:

• r: intrinsic growth rate of juvenile prey.

• k: environmental carrying capacity.

• β : portion of juvenile prey who becomes adult.

• β1: attack rate of predator to the juvenile prey.

• β2: attack rate of predator to the adult prey.

• µ: conservation rate of predator to consume juvenile

prey.

• µ1: conservation rate of predator to consume adult prey.

• η : rate of anti-predator behaviour of adult prey to the

predator.

• d: death rate of adult prey.

• d1: death rate of predator.

• k1,k2,k3,k4 are the saturation constants for the func-

tional responses.

3. BOUNDEDNESS OF SOLUTIONS

Theorem 1. All solutions of system (1) which originates

in R3
+ are uniformly bounded. Proof. Let us define a function

of the following form

W = µx+µ1y+ z (2)

Taking time derivative of the above equation, it is obtained

that

dW
dt

= µ
dx
dt

+µ1
dy
dt

+
dz
dt

= µrx(1− x
k
)−µβx+µ1βx−µ1dy−d1z−ηyz

Now, introducing a positive number η1 it is obtained that

dW
dt

+η1W

= µrx(1− x
k
)−µβx+µ1βx+η1µx−µ1dy+η1µ1y−d1z−ηyz+η1z

= µrx(1− x
k
)+(η1µ +µ1β −µβ )x+(µ1η1−µ1d)y+(η1−d1)z−ηyz

= µrx(1− x
k
)+(η1µ +µ1β −µβ )x+µ1(η1−d)y+(η1−d1)z−ηyz

If η1 = max{β (1− µ1
µ
),d,d1}, then, it is obtained that

dW
dt

+η1W ≤ µrx(1− x
k
)

≤ dk(r+η1)
2

4r

Then solving the above equation, we have

0≤W (t)≤ e−η1tC+
l

η1

where l = dk(r+η1)
2

4r .

Now, taking t→ ∞, it is obtained that

W (t)≤ l
η1

Hence all solutions of the system are bounded in the region

Ω = {(x,y,z) ∈ R3 : W (t) =
l

η1
+ ε,ε > 0}

4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

From the system (1), we have

dx
dt

= f1(t,x,y,z)

dy
dt

= f2(t,x,y,z)

dz
dt

= f3(t,x,y,z)
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where

f1(t,x,y,z) = rx(1− x
k
)−βx− β1xz2

z2 + k1xz+ k2x2

f2(t,x,y,z) = βx−dy− β2yz2

z2 + k3yz+ k4y2

f3(t,x,y,z) =
µβ1xz2

z2 + k1xz+ k2x2 +
µ1β2yz2

z2 + k3yz+ k4y2 −d1z−ηyz

From the above system of equations, it is seen that all three

functions f1, f2 and f3 are continuous in a 4-dimensional rect-

angular region R defined by

|t− t0| ≤ a, |x− c1| ≤ b1, |x− c2| ≤ b2, |x− c3| ≤ b3

where (t0,c1,c2,c3) is a point of real 4-dimensional (t,x,y,z)

space and a,b1,b2,b3 are positive constants.

Lemma 1. If f (x) = rx(1− x
k )−βx then its maximum value

is k(r−β )2

4r .

Proof. Now, we have

f (x) = rx(1− x
k
)−βx

For extreme value of f (x), f ′(x) = 0 gives the extreme point

x = k(r−β )
2r . At the point x = k(r−β )

2r , f ′′(x) = − 2r
k < 0. So

the function f (x) has a maximum value at x = k(r−β )
2r and the

maximum value is k(r−β )2

4r .

Now, we have

f1(t,x,y,z) = rx(1− x
k
)−βx− β1xz2

z2 + k1xz+ k2x2

i.e., f1(t,x,y,z)≤ rx(1− x
k
)−βx,

since all parameters and state variables are positive

i.e., f1(t,x,y,z)≤
k(r−β )2

4r
, using Lemma 1.

Lemma 2. If a and b be two real numbers then |a− b| ≤

|a|+ |b|.

Proof. It is known that

−|a| ≤ a≤ |a| and −|b| ≤ b≤ |b|.

Adding these two inequalities we have

−(|a|+ |b|)≤ a+b≤ |a|+ |b|

So, the above equation implies that

|a+b| ≤ |a|+ |b|, since − c≤ a≤ c =⇒ |a| ≤ c (3)

Now, replacing b by −b in equation (3), we have

|a−b| ≤ |a|+ |−b|

i.e.,|a−b| ≤ |a|+ |b|

In the similar way, using Theorem 1. and Lemma 2. we can

prove that

| f2(t,x,y,z)| ≤ β l1 +dm1

and

| f3(t,x,y,z)| ≤
µβ1l1n2

1

n2
1 + k1l1n1 + k2l2

1

+
µ1β2m1n2

1

n2
1 + k3m1n1 + k4m2

1
+d1n1 +ηm1n1

Since the state variables are bounded, then there exist three

positive real numbers l1,m1 and n1 such that

|x(t)| ≤ l1, |y(t)| ≤ m1 and |z(t)| ≤ n1

Therefore, we can write the following

| fi(t,x,y,z)| ≤M, for i = 1,2,3 and (t,x,y,z) ∈ R

where

M = max{k(r−β )2

4r
,β l1 +dm1,

µβ1l1n2
1

n2
1 + k1l1n1 + k2l2

1
+

µ1β2m1n2
1

n2
1 + k3m1n1 + k4m2

1
+d1n1 +ηm1n1}

Now, any two points such as (t,x1,y1,z1) and (t,x2,y2,z2) be

considered in the rectangular region R. For these two points

we have

f1(t,x1,y1,z1)− f1(t,x2,y2,z2)

= (r−β −β1z2
2)(x1− x2)−

r
k
(x2

1− x2
2)−β1x1(z2

1− z2
2)

≤ (r−β −β1n2
1)(x1− x2),

provided thatx1 > x2,z1 > z2,r > β +β1n2
1.

i.e., | f1(t,x1,y1,z1)− f1(t,x2,y2,z2)| ≤ K1|x1− x2|,

where K1 = (r−β −β1n2
1)
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In the similar way, it can be proved that

| f2(t,x1,y1,z1)− f2(t,x2,y2,z2)|

≤ K2{|x1− x2|+ |y1− y2|},

where K2 = max{β ,d}

and | f3(t,x1,y1,z1)− f3(t,x2,y2,z2)|

≤ K3{|x1− x2|+ |y1− y2|+ |z1− z2|},

where K3 = max{(µβ1n4
1),(µ1β2n4

1−ηn1),

(µβ1k1l2
1n2

1 +µ1β2k3m2
1n2

1−d−ηm1)}

Hence, the three functions f1(t,x,y,z), f2(t,x,y,z) and

f3(t,x,y,z) satisfy the lipchitz’s condition if following are sat-

isfied.

r > β +β1n2
1,µ1β2n3

1 > η and µβ1k1l2
1n2

1 +µ1β2k3m2
1n2

1

> d +ηm1

5. POSSIBLE EQUILIBRIUM POINTS AND THEIR

STABILITY ANALYSIS

The equilibrium points of the system (1), can be obtained

by satisfying the following three equations

dx
dt

= 0,
dy
dt

= 0 and
dz
dt

= 0 (4)

Solving these three equations we have five equilibrium points

which are as follows

E0(0,0,0),E1(k,0,0),E2(k(1−
β

r
),

βk
d
(1− β

r
),0),E3(x∗1,

0,z∗1),E4(x∗2,y
∗
2,z
∗
2)

where x∗1, z∗1 with β = 0 and (x∗2,y
∗
2,z
∗
2) satisfying the equation

µrx∗1(1−
x∗1
k
) = d1z∗1

and

µrx∗2
2

k
+ x∗2(µβ −µr−µ1β )+ηy∗2z∗2 +dµ1y∗2 +d1z∗2 = 0

Again, if (x∗,y∗,z∗) be the equilibrium point in general then

after combining the equation (4) we have

i.e.,

µrx∗2

k
+ x∗(µβ −µr−µ1β )+ηy∗z∗+dµ1y∗+d1z∗ = 0 (5)

Now, this is a quadratic equation in x∗ i.e., for each values of
y∗ and z∗ there may exist two values of x∗ which are as follows
i.e.,

x∗ = (6)

−(µβ −µr−µ1β )±
√

(µβ −µr−µ1β )2−4 µr
k (ηy∗z∗+dµ1y∗+d1z∗)

2µr
k

Lemma 3. If x∗ = 0 then the system (1) goes to the trivial

equilibrium point (0,0,0).

Proof. If x∗ = 0 then from equation (5) we have

ηy∗z∗+dµ1y∗+d1z∗ = 0.

Since all the parameters and state variables are nonnegative,

so the above equation will satisfy if y∗ = 0 and z∗ = 0. Hence

the system goes to the equilibrium point (0,0,0).

Lemma 4. If β = 0 i.e., y∗ = 0 and z∗ = 0 then the

system (1) goes to the equilibrium point (k,0,0) and if β = 0

i.e., y∗ = 0 and z∗ 6= 0 then the system goes to the equilibrium

point (x∗,0,z∗).

Proof. If β = 0 i.e., y∗ = 0 and z∗ = 0 then from equa-

tion (6) it is obtained that x∗ = k. Then the system goes the

equilibrium point (k,0,0). If β = 0 i.e., y∗ = 0, but z 6= 0 then

from equation (5) we have

µrx∗2

k
−µrx∗+d1z∗ = 0

then the system goes to an equilibrium point (x∗,0,z∗) where

x∗ and z∗ will satisfy the above equation.

Lemma 5. For existence of positive equilibrium point

of the system (1), P1 > 0, P2 > 0 and P3 > 0 must hold

where P1 = (µβ − µr − µ1β )2 − 4 µr
k {ηyz + dµ1y + d1z},

P2 = µr+µ1β −µβ and P3 = (ηy+d1)z+dµ1y.

Proof. The equation (5) can be written as

ax∗2 +bx∗+ c = 0 (7)

where a = µr
k ,b = (µβ − µr− µ1β ),c = ηy∗z∗ + dµ1y∗ +

d1z∗. Let α1 and α2 be any two roots of the equation (7).
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Therefore, we have

α1 =
−b+

√
b2−4ac

2a
and α2 =

−b−
√

b2−4ac
2a

i.e.,α1 +α2 =−
b
a

and α1α2 =
c
a

Now, α1 and α2 be a positive real roots of equation (7) if

b2−4ac > 0,α1 +α2 =−
b
a
> 0 and α1.α2 =

c
a
> 0

Now, b2−4ac > 0 implies that

(µβ −µr−µ1β )2−4
µr
k
{ηyz+dµ1y+d1z}> 0

i.e.,(µβ −µr−µ1β )2 > 4
µr
k
{ηyz+dµ1y+d1z} (8)

Again, from α1 +α2 =− b
a > 0, we have

− (µβ −µr−µ1β )
µr
k

> 0

i.e.,{−µβ +µr+µ1β}> 0

i.e.,µr+µ1β > µβ (9)

and finally α1.α2 =
c
a > 0 implies that

ηyz+dµ1y+d1z > 0

i.e.,(ηy+d1)z+dµ1y > 0 (10)

Therefore, from equation (8),(9) and (10) the proposed sys-

tem (1) has positive equilibrium point provided that

P1 = (µβ −µr−µ1β )2−4
µr
k
{ηyz+dµ1y+d1z}> 0,

P2 = µr+µ1β −µβ > 0 and

P3 = (ηy+d1)z+dµ1y > 0

Hence the proof.

Around any equilibrium point, the system will be lo-

cally asymptotically stable if all eigenvalues of the linearized

variational matrix are negative or have negative real parts.

Now, the jacobian matrix of the system (1) is given by

J(x,y,z) =


L1 0 L2

β L3 L4

L5 L6 L7

 (11)

where L1 = r − 2rx
k − β − β1z2

z2+k1xz+k2x2 + β1xz2(k1z+2k2x)
(z2+k1xz+k2x2)2 ,

L2 = β1xz2(2z+k1x)
(z2+k1xz+k2x2)2 −

2β1xz
z2+k1xz+k2x2 , L3 = −d− β2z2

z2+k3yz+k4y2 +

β2yz2(2k4y+k3z)
(z2+k3yz+k4y2)2 , L4 = β2yz2(2z+k3y)

(z2+k3yz+k4y2)2 −
2β2yz

z2+k3yz+k4y2 ,

L5 = µβ1z2

z2+k1xz+k2x2 −
µβ1xz2(k1z+2k2x)
(z2+k1xz+k2x2)2 , L6 = µ1β2z2

z2+k3yz+k4y2 −
µ1β2yz2(2k4y+k3z)
(z2+k3yz+k4y2)2 − ηz, L7 = 2µβ1xz

z2+k1xz+k2x2 −
µβ1xz2(2z+k1x)
(z2+k1xz+k2x2)2 +

2µ1β2yz
z2+k3yz+k4y2 −

µ1β2yz2(2z+k3y)
(z2+k3yz+k4y2)2 −d1−ηy.

Stability Analysis at E0(0,0,0)

Since the system is undefined at (0,0,0) and difficult to study

the behavior of the system at that point. To overcome such

situation, we modify the model (1) as when (x,y,z) 6= (0,0,0)

and dx
dt =

dy
dt =

dz
dt = 0 at E0(0,0,0). To analyze the behavior

of the system at trivial equilibrium, we follow the method

developed by Arino et al. [11]. Then we rewrite the model as

dV
dt

= H(V (t))+Q(V (t))

where H(.) is a continuous and homogeneous function of de-

gree one; V = (x,y,z); Q is a C1 function with Q(V ) = o(V ).

For the present problem, H = ((r−β )x,−dy,−d1z). Let V (t)

be a solution of the above such that limin ft→∞||V (t)||= 0 and

V (tn) be the corresponding sequence which tends to zero as

t→ ∞.

Define yn = (V (tn + s)/||V (tn + s)||). Then, yn is a sequence

such that ||yn|| = 1. Now, by Ascoli-Arzela theorem, there

should exist a subsequence of yn that converges to a function

y(t) satisfying the equation

dy
dt

= H(y(t))− (y(t),H(y(t)))y(t) (12)

The steady state of the above equation will be given by the

vector v(t) = (v1,v2,v3) where H(v) = (v,H)v are the solu-

tions of the eigenvalue problem

H(v) = λv

λ = (v,H(v)) (13)

From the above equation we have (r − β − λ )v1 =

0,(d +λ )v2 = 0,(d1 +λ )v3 = 0.

We now study the following cases:

Case I: v1 6= 0,v2 = v3 = 0.

In this case, the system can reach the trivial equilibrium

(origin) along the x-axis with λ = r−β when r < β .

Case II: v1 = v3 = 0,v2 6= 0.
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The system will reach the origin along the y-axis with

λ =−d.

Case III: v1 = v2 = 0,v3 6= 0.

The system will reach the origin along the z-axis with

λ =−d1.

Stability Analysis at E1 = (k,0,0) for β = 0

Since the system is undefined at (k,0,0) and difficult to

study the behavior of the system at that point. Stability of

the system (1) at the point (k,0,0) is analyzed using the

same approach used in stability analysis at (0,0,0). We have

(−r−λ )v1 = 0,(d +λ )v2 = 0,(d1 +λ )v3 = 0.

Now, the following cases can be obtained

Case I: v1 6= 0,v2 = v3 = 0.

In this case, the system will reach the equilibrium (k,0,0)

along the x-axis with λ =−r.

Case II: v1 = v3 = 0,v2 6= 0.

The system will reach (k,0,0) along the y-axis with λ =−d.

Case III: v1 = v2 = 0,v3 6= 0.

The system will reach (k,0,0) along the z-axis with λ =−d1.

Lemma 6. There exists an asymptotical stability around the

equilibrium point E2(k(1− β

r ),
βk
d (1− β

r ),0).

Proof. The jacobian matrix of the system (1) at

E2(k(1− β

r ),
βk
d (1− β

r ),0) is given by
−r+β 0 0

β −d 0

0 0 −d1− ηβk
d (1− β

r )


The eigenvalues of the jacobian matrix are−r+β ,−d,−d1−
ηβk

d (1− β

r ).

Since r > β then all the eigenvalues of the jacobian matrix

are negative and the system (1) will be locally asymptotically

stable at the equilibrium point E2.

The following asymptotically stabilities have been dis-

cussed about the equilibrium point E3(x∗1,0,z
∗
1) for β = 0 and

E4(x∗2,y
∗
2,z
∗
2).

Lemma 7. The system (1) will be an locally asymptot-

ically stable around E3(x∗1,0,z
∗
1) for β = 0 if c1 > 0,c3 > 0

and c1c2− c3 > 0.

Proof. At the equilibrium point E3(x∗1,0,z
∗
1) where β = 0,

corresponding jacobian matrix is given by
M1 M2 M3

M4 M5 M6

M7 M8 M9


where M1 = r − 2rx∗1

k − β1z1
∗2

(z1∗2+k1x∗1z∗1+k2x1∗2)
+

β1x∗1z1
∗2

(z1∗2+k1x∗1z∗1+k2x1∗2)
,M2 = 0,M3 =

β1x∗1z1
∗2(2z∗1+k1x∗1)

(z1∗2+k1x∗1z∗1+k2x1∗2)2 −
2β1x∗1z∗1

(z1∗2+k1x∗1z∗1+k2x1∗2)
,M4 = 0,M5 = −d − β2,M6 = 0.0, M7 =

µβ1z1
∗2

(z1∗2+k1x∗1z∗1+k2x1∗2)
− µβ1x∗1z1

∗2(k1z∗1+2k2x∗1)
(z1∗2+k1x∗1z∗1+k2x1∗2)2 , M8 = µ1β2 − ηz∗1,

M9 =
2µβ1x∗1z∗1

(z1∗2+k1x∗1z∗1+k2x1∗2)
− µβ1x∗1z1

∗2(2z∗1+k1x∗1)
(z1∗2+k1x∗1z∗1+k2x1∗2)2 −d1.

Then the characteristic equation of the above jacobian matrix

is

λ
3 + c1λ

2 + c2λ + c3 = 0

where c1 = −(M1 + M5 + M9),c2 = (M1M5 + M1M9 +

M5M9 − M6M8 − M2M4 − M3M7) and c3 = M3M5M7 +

M2M4M9 + M1M6M8 − M1M5M9 − M2M6M7 − M3M4M8.

Now, by Routh-Hurwitch criteria the system (1) will be

locally asymptotically stable around E3 if c1 > 0,c3 > 0 and

c1c2− c3 > 0.

Lemma 8. The system (1) will be locally asymptoti-

cally stable around E4(x∗2,y
∗
2,z
∗
2) if b1 > 0,b3 > 0 and

b1b2−b3 > 0.

Proof. At the equilibrium point E4(x∗2,y
∗
2,z
∗
2), the correspond-

ing jacobian matrix is given by
N1 N2 N3

N4 N5 N6

N7 N8 N9


where N1 = r − 2rx∗2

k − β − β1z2
∗2

(z2∗2+k1x∗2z∗2+k2x2∗2)
+

β1x∗2z2
∗2

(z2∗2+k1x∗2z∗2+k2x2∗2)2 ,N2 = 0,N3 =
β1x∗2z2

∗2(2z∗2+k1x∗2)
(z2∗2+k1x∗2z∗2+k2x2∗2)2 −

2β1x∗2z∗2
(z2∗2+k1x∗2z∗2+k2x2∗2)

,N4 = β ,N5 = −d − β2z2
∗2

(z2∗2+k3y∗2z∗2+k4y2∗2)
+

β2y∗2z2
∗2(k3z∗2+2k4y∗2)

(z2∗2+k3y∗2z∗2+k4y2∗2)2 ,N6 =
β2y∗2z2

∗2(k3y∗2+2z∗2)
(z2∗2+k3y∗2z∗2+k4y2∗2)2 −



26

2β2y∗2z∗2
(z2∗2+k3y∗2z∗2+k4y2∗2)

, N7 = µβ1z2
∗2

(z2∗2+k1x∗2z∗2+k2x2∗2)
−

µβ1x∗2z2
∗2(k1z∗2+2k2x∗2)

(z2∗2+k1x∗2z∗2+k2x2∗2)2 , N8 = µ1β2z2
∗2

(z2∗2+k3y∗2z∗2+k4y2∗2)
−

µ1β2y∗2z2
∗2(k3z∗2+2k4y∗2)

(z2∗2+k3y∗2z∗2+k4y2∗2)2 − ηz∗2, N9 =
2µβ1x∗2z∗2

(z2∗2+k1x∗2z∗2+k2x2∗2)
−

µβ1x∗2z2
∗2(2z∗2+k1x∗2)

(z2∗2+k1x∗2z∗2+k2x2∗2)2 +
2µ1β2y∗2z∗2

(z2∗2+k3y∗2z∗2+k4y2∗2)
−

µ1β2y∗2z2
∗2(2z∗2+k3y∗2)

(z2∗2+k3y∗2z∗2+k4y2∗2)2 −d1−ηy∗2.

Then the characteristic equation of the above jacobian matrix

is

λ
3 +b1λ

2 +b2λ +b3 = 0

where b1 = −(N1 +N5 +N9),b2 = (N1N5 +N1N9 +N5N9−

N6N8 − N2N4 − N3N7) and b3 = N3N5N7 + N2N4N9 +

N1N6N8 − N1N5N9 − N2N6N7 − N3N4N8. Now, by Routh-

Hurwitch criteria the system (1) will be locally asymptotically

stable around E4 if b1 > 0,b3 > 0 and b1b2−b3 > 0.

Theorem 2. The three populations i.e., juvenile prey,

adult prey and predator populations will extinct provided that

β1 > (r−β ) and k1 = k2 = k3 = k4 = 0.

Proof. We have from the first equation of system (1) with

k1 = k2 = 0, it is obtained that

dx
dt

= (r−β )x− rx2

k
−β1x

i.e.,
dx
dt
≤ (r−β )x−β1x

i.e.,
dx
x
≤ (r−β −β1)dt (14)

Then integrating equation (14), it is obtained that

x≤C1e(r−β−β1)t

Now, if β1 > (r−β ), then taking t tends to infinity we have

x→ 0. Again, from the second equation of system (1) with

k3 = k4 = 0, it is obtained that

dy
dt

= βx−dy−β2y

i.e.,
dy
dt
≤C1βe(r−β−β1)t − (d +β2)y

i.e.,
dy
dt

+(d +β2)y≤C1βe(r−β−β1)t (15)

Then solving equation (15), it is obtained that

y≤ C1βe(r−β−β1)t

(r−β −β1 +d +β2)
+C2e−(d+β2)t

Now, if β1 > (r−β ), then taking t tends to infinity we have

y→ 0.

Also again, from the third equation of system (1) with k1 =

k2 = k3 = k4 = 0, it is obtained that

dz
dt

= µβ1x+µ1β2y−d1z−ηyz

i.e.,
dz
dt
≤C1µβ1e(r−β−β1)t +C1µ1β2

βe(r−β−β1)t

(r−β −β1 +d +β2)

+C2µ1β2e−(d+β2)t −d1z

i.e.,
dz
dt

+d1z≤C1e(r−β−β1)t
[

µβ1 +
µ1β2

(r−β −β1 +d +β2)

]
+C2µ1β2e−(d+β2)t (16)

Then, solving equation (16), it is obtained that

z≤C1

[
µβ1 +

µ1β2
(r−β−β1+d+β2)

]
(r−β −β1 +d1)

e(r−β−β1)t +C2
µ1β2

(d +β2 +d1)
e−(d+β2)t

Now, if β1 > (r−β ), then taking t tends to infinity we have

z→ 0.

Hence the Proof.

Lemma 9. The predator population will be decreased if

the anti-predator behavior (η) of the adult prey population

increased.

The proof of this lemma is obvious.

6. GLOBAL STABILITY ANALYSIS

The ability of an ecological unit to withstand great distur-

bances without being greatly affected is called Global Sta-

bility. Since in a natural system all parametric values will

be changed in time to time hence, the stability of the system

will also be changed due to the changes of parametric values.

So, the evaluation of global stability condition (Li and Mul-

downey [10]) of the positive equilibrium is necessary.

Theorem.3 The proposed system (1) will be globally asymp-

totically stable around its positive equilibrium point, provided
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that

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′1 +L′3 +L′4

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′1 +L′3 +L′2

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′1 +β +L′6 +L′7

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′3 +L′5 +L′7

where L′1, .....,L
′
7 and ξ have been mentioned inside the proof.

Proof. The autonomous system (1) can be written in the fol-

lowing form

dX
dt

= f (X) (17)

where

f (X) =


rx(1− x

k )−βx− β1xz2

z2+k1xz+k2x2

βx−dy− β2yz2

z2+k3yz+k4y2

µβ1xz2

z2+k1xz+k2x2 +
µ1β2yz2

z2+k3yz+k4y2 −d1z−ηyz

 ,X =


x

y

z


Then the jacobian matrix for the system (17) obtained from

equation (13) is given by

J(x,y,z) =


L1 0 L2

β L3 L4

L5 L6 L7


where L1 = r − 2rx

k − β − β1z2

z2+k1xz+k2x2 + β1xz2(k1z+2k2x)
(z2+k1xz+k2x2)2 ,

L2 = β1xz2(2z+k1x)
(z2+k1xz+k2x2)2 −

2β1xz
z2+k1xz+k2x2 , L3 = −d− β2z2

z2+k3yz+k4y2 +

β2yz2(2k4y+k3z)
(z2+k3yz+k4y2)2 , L4 = β2yz2(2z+k3y)

(z2+k3yz+k4y2)2 −
2β2yz

z2+k3yz+k4y2 ,

L5 = µβ1z2

z2+k1xz+k2x2 −
µβ1xz2(k1z+2k2x)
(z2+k1xz+k2x2)2 , L6 = µ1β2z2

z2+k3yz+k4y2 −
µ1β2yz2(2k4y+k3z)
(z2+k3yz+k4y2)2 − ηz, L7 = 2µβ1xz

z2+k1xz+k2x2 −
µβ1xz2(2z+k1x)
(z2+k1xz+k2x2)2 +

2µ1β2yz
z2+k3yz+k4y2 −

µ1β2yz2(2z+k3y)
(z2+k3yz+k4y2)2 −d1−ηy.

If J[2] be the second additive compound matrix of J can be

expressed as

J[2] =


L1 +L3 L4 −L2

L6 L1 +L7 0

−L5 β L3 +L7


Now, let us consider a function M(X) in such a way that

M = diag{x
z
,

x
z
,

x
z
} and M−1 = diag{ z

x
,

z
x
,

z
x
}

Again, we define

M f =
dM
dx

= diag{ ẋ
z
− ẋ

z2 ż,
ẋ
z
− ẋ

z2 ż,
ẋ
z
− ẋ

z2 ż}

M f M−1 = diag{ ẋ
x
− ż

z
,

ẋ
x
− ż

z
,

ẋ
x
− ż

z
}

MJ[2]M−1 = J[2]

We have

B = M f M−1 +MJ[2]M−1

=


ẋ
x −

ż
z +L1 +L3 L4 −L2

L6
ẋ
x −

ż
z +L1 +L7 0

−L5 β
ẋ
x −

ż
z +L3 +L7


where

B11 =
ẋ
x
− ż

z
+L1 +L3,B12 =

(
L4 −L2

)
B21 =

 L6

−L5



B22 =

 ẋ
x −

ż
z +L1 +L7 0

β
ẋ
x −

ż
z +L3 +L7


Now,

Γ1(B11) =
ẋ
x
− ż

z
+L1 +L3, |B12|

= max{L4, |−L2|}, |B21|= max{L6, |−L5|}

Γ1(B22) =
ẋ
x
− ż

z
+L7 +max{L1 +β ,L3}

Again, from the third equation of system (1), it is obtained

that

ż
z
=

µβ1xz
z2 + k1xz+ k2x2 +

µ1β2yz
z2 + k3yz+ k4y2 −d1−ηy (18)

Here,

p1 = Γ1(B11)+ |B12|

=
ẋ
x
− ż

z
+L1 +L3 +max{L4, |−L2|}

=
ẋ
x
+max{L1 +L3 +L4−

ż
z
,L1 +L3 + |−L2|−

ż
z
}

p2 = Γ1(B22)+ |B21|

=
ẋ
x
− ż

z
+L7 +max{L1 +β ,L3}+max{L6, |−L5|}

=
ẋ
x
+max{L1 +β +L6 +L7−

ż
z
,L3 + |−L5|+L7−

ż
z
}
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Now,

Γ(B)≤ max{p1, p2}

Γ(B)≤ ẋ
x
+max{L1 +L3 +L4−

ż
z
,L1 +L3 + |−L2|−

ż
z
,

L1 +β +L6 +L7−
ż
z
,L3 + |−L5|+L7−

ż
z
}

Γ(B)≤ ẋ
x
−min{ ż

z
−L1−L3−L4,

ż
z
−L1−L3−|−L2|,

ż
z
−L1−β −L6−L7,

ż
z
−L3−|−L5|−L7}

the above equation can be written as

Γ(B)≤ ẋ
x
−w (19)

where the expression of w ca be found by using the value of

equation (18) as

w = min{ µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ −L′1−L′3−L′4,

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ −L′1−L′3−L′2,

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ −L′1−β −L′6−L′7,

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ −L′3−L′5−L′7}

and

L′1 = r− 2rξ

k
−β − β1

1+ k1 + k2
+

β1(k1 +2k2)

(1+ k1 + k2)2

L′2 = |−L2|= |
2β1

1+ k1 + k2
− β1(2+ k1)

(1+ k1 + k2)2 |

L′3 =−d− β2

1+ k3 + k4
+

β2(2k4 + k3)

(1+ k3 + k4)2

L′4 =
β2(2+ k3)

(1+ k3 + k4)2 −
2β2

1+ k3 + k4

L′5 = |−L5|= |
µβ1(k1 +2k2)

(1+ k1 + k2)2 −
µβ1

1+ k1 + k2
|

L′6 =
µ1β2

1+ k3 + k4
− µ1β2(2k4 + k3)

(1+ k3 + k4)2 −ηξ

L′7 =
2µβ1

1+ k1 + k2
− µβ1(2+ k1)

(1+ k1 + k2)2 +
2µ1β2

1+ k3 + k4

− µ1β2(2+ k3)

(1+ k3 + k4)2 −d1−ηξ

also

ξ = min{x(t),y(t),z(t)}.

Then integrating equation (19) from 0 to t it is obtained that

∫ t

0
Γ(B)ds≤

∫ t

0

ẋ
x

dt−w
∫ t

0
dt∫ t

0
Γ(B)ds≤ log

x(t)
x(0)
−wt

i.e.,
1
t

∫ t

0
Γ(B)ds≤ 1

t
log

x(t)
x(0)
−w

i.e., lim
t→∞

supsup
1
t

∫ t

0
µ(B)ds <−w < 0, provided that w > 0

Now, the value of w will be positive if

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′1 +L′3 +L′4

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′1 +L′3 +L′2

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′1 +β +L′6 +L′7

µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ > L′3 +L′5 +L′7

Hence the theorem.

7. NUMERICAL SIMULATIONS

In this section, the dynamical behaviour of the pro-

posed model (1) has been discussed numerically using

MATLAB. Due to unavailability of real data of all pa-

rameters associated with the model, the hypothetical val-

ues of different parameters have been considered as fol-

lows: r = 0.05,k = 15,β = 0.1,β1 = 0.2,k1 = 0.0001,k2 =

0.0003,d = 0.01,β2 = 0.2,k3 = 0.002,k4 = 0.003,µ =

0.9,µ1 = 0.85,d1 = 0.015,η = 0.01. Now, for this data set

it is observed that the system (1) is locally asymptotically sta-

ble around the equilibrium point E0(0,0,0) since r < β . This

is also shown in Fig.1 graphically.
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Fig.1 representation of stability around E0.

Again, we consider another set of parametric values such as

r = 5,k = 15.0,β = 0.0,β1 = 0.01,k1 = 0.1,k2 = 0.1,d =

0.1,β2 = 0.01,k3 = 0.1,k4 = 0.1,µ = 0.4,µ1 = 0.45,d1 =

0.15,η = 0.01. Now, for this data set it is observed that the

system (1) is locally asymptotically stable around the equi-

librium point E1(15,0,0) since β = 0. This is also shown in

Fig.2 graphically.

Fig.2 representation of stability around E1.

Again, we also consider another set of parametric values such

as r = 5,k = 15.0,β = 0.1,β1 = 0.02,k1 = 0.1,k2 = 0.1,d =

0.1,β2 = 0.02,k3 = 0.2,k4 = 0.3,µ = 0.4,µ1 = 0.45,d1 =

0.15,η = 0.01.

Now, for this data set it is observed that the system (1) is

locally asymptotically stable around the equilibrium point

E2 = (14.7,14.7,0) since r > β according to Lemma 6. This

is also shown in Fig.3 graphically.

Now, we consider the set of parametric values: such as

r = 5,k = 15.0,β = 0.0,β1 = 0.01,k1 = 0.01,k2 = 0.01,d =

0.1,β2 = 0.01,k3 = 0.1,k4 = 0.1,µ = 0.4,µ1 = 0.45,d1 =

0.15,η = 0.01.

Now, for this data set it is observed that the system (1) is

locally asymptotically stable around the equilibrium point

E3 = (14.99,0,0.39) since c1 = 5.2633 > 0,c3 = 0.0826 > 0

and c1c2− c3 = 6.8512 > 0 according to Lemma 7.. This is

also shown in Fig.4 graphically.

Fig.3 representation of stability around E2.
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Fig.4 representation of stability around E3.

For the same set of parametric values we draw the equilibrium

curve for the equilibrium point (x∗1,0,z
∗
1). The stable and un-

stable equilibrium points have been shown separately in Fig.5.

Fig.5 curve of equilibrium points of E3.

Again, we also consider another set of parametric values:

such as r = 0.9,k = 15,β = 0.1,β1 = 0.2,k1 = 0.01,k2 =

0.03,d = 0.01,β2 = 0.2,k3 = 0.002,k4 = 0.003,µ = 0.9,µ1 =

0.85,d1 = 0.015,η = 0.01.

Now, for this parametric values it is seen that P1 = 0.0762 >

0,P2 = 0.8050 > 0,P3 = 2.6472 > 0. Hence, according to

Lemma 5 there exists a positive equilibrium point which is

E4 = (10,4.722,41.56). Again, for this data set it is ob-

served that the system (1) is locally asymptotically stable

around the equilibrium point E4 = (10,4.722,41.56) since

b1 = 0.8704 > 0,b3 = 0.0078 > 0,b1b2−b3 = 0.1454 > 0 ac-

cording to Lemma 8. This is also shown graphically in Fig.6.

Also, for this set of parametric values we have

L′1 = r− 2rξ

k
−β − β1

1+ k1 + k2
+

β1(k1 +2k2)

(1+ k1 + k2)2 = 0.0540

L′2 = |−L2|= |
2β1

1+ k1 + k2
− β1(2+ k1)

(1+ k1 + k2)2 |= 0.0129

L′3 =−d− β2

1+ k3 + k4
+

β2(2k4 + k3)

(1+ k3 + k4)2 =−0.2074

L′4 =
β2(2+ k3)

(1+ k3 + k4)2 −
2β2

1+ k3 + k4
=−0.0016

L′5 = |−L5|= |
µβ1(k1 +2k2)

(1+ k1 + k2)2 −
µβ1

1+ k1 + k2
|= 0.1614

L′6 =
µ1β2

1+ k3 + k4
− µ1β2(2k4 + k3)

(1+ k3 + k4)2 −ηξ = 0.1206

(20)

L′7 =
2µβ1

1+ k1 + k2
− µβ1(2+ k1)

(1+ k1 + k2)2 +
2µ1β2

1+ k3 + k4
− µ1β2(2+ k3)

(1+ k3 + k4)2

−d1−ηξ =−0.0492
µβ1

1+ k1 + k2
+

µ1β2

1+ k3 + k4
−d1−ηξ = 0.2800 and ξ = 4.722

Then, all conditions of Theorem 3 have been satisfied. There-

fore, it is concluded that our proposed system (1) is globally

asymptotically stable around the positive equilibrium point

E4 = (10,4.722,41.56) for this data set.
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Fig.6 representation of stability around E4.

Now, taking the same set of parametric values which have

been used in Fig.6 except β1 = 0.9,k1 = k2 = k3 = k4 = 0,

Fig.7 has been drawn. From this figure, it is observed that

all three populations are going to extinction with respect

to time. That is, if (i) the handling time of the predator to

consume the both juvenile prey and adult prey are zero and

(ii) there does not exist no competition between preys i.e., if

the consumption rate of a predator to an juvenile prey is grater

than the difference of the intrinsic growth rate of the juvenile

prey and the transmission rate from the juvenile prey to the

adult prey, then both the prey and predator populations extinct

after sometimes. This has been also proved analytically in

Theorem 2.

Finally, the effects of anti-predator behaviour of adult

prey have been shown in Fig.8 taking the parametric values

which have been used in Fig.6. From, this figure it is

observed that when the value of anti-predator behavior η

increases, then the predator population gradually decreases

and ultimately it becomes extinct.

Fig.7 extinction of populations when β1 > (r−β ).

Fig.8 sensitivity analysis of the anti-predator behavior η .

8. CONCLUSION

In this paper, a predator-prey model has been considered. In

this model it has been introduced that the adult prey has anti-

predator behaviour and consequently a predator attacks more

juvenile prey than adult prey. That is, here the prey popula-

tion has been divided into two subpopulations such as (i) ju-

venile prey (ii) adult prey. Here, a Holling type-IV functional
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response has been used on the basis of ratio-dependency of

prey and predator. After deriving the existence condition and

boundedness of solutions of the model, the local stability of

the system around the different equilibrium points and global

stability of the system around interior equilibrium point have

been discussed theoretically and numerically. Here a condi-

tion has been derived when the prey and predator both popu-

lation extinct. We observe that if the growth rate of juvenile

prey is less than the transmission rate (β ) of adult prey from

the juvenile prey population then all the three populations go

to extinction. It is also observed that if the consumption rate

of a predator to an juvenile prey is grater than the difference

of the intrinsic growth rate of the juvenile prey and the trans-

mission rate from the juvenile prey to the adult prey then the

three populations also go to extinction. At last it is observed

that if the anti-predator behaviour of adult prey increases then

the predator population may be extinct.
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