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In this paper, we study semi-invariant éL—submanifolds which endowed with a generalization of structured

manifolds as the most general Riemannian metric g associated to an affinor F. We have also investigate the

integrability conditions of both invariant and anti-invariant ditributions and characterizations for totally geodesic

case.
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1. INTRODUCTION

In the differential geometry the theory of submanifolds in
spaces endowed with additional structures has been inten-
sively studied and several important papers have been ap-
peared in this field. Let us mention only few of them: a series
of papers of B.Y. Chen (see, [5], [6], [7]), N. Papaghiuc (see
[11] [12])and A. Bejancu studied semi-invariant submanifold
for almost contact structure (see, [3] [4]) as well as almost
complex geometry [2] which had a great impact on developing
of the theory of submanifolds in which these ambient spaces,
for example A. Bejancu in [1] also studied QR-submanifolds
in quaternionic manifold and M. Barros et al. investigated CR-
submanifolds in quaternionic manifolds [5]. In [8] C. Calin
et al. studied the semi-invariant §l submanifolds of gener-
alized quasi-Saskian manifold. Moreover, N. C. Chiriac and
M. Crasmareanu studied semi-invariant submanifolds in met-
ric geometry of affinors [9]. The purpose of the present paper
is to investigate the semi-invariant éL -submanifolds in metric

geometry of affinors.
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2. PRELIMINARIES

Let M be an n-dimensional manifold for which we denote
by C*(M), the algebra of smooth functions on M and by TM
the C*(M)-module of smooth sections of the tangent bundle
TM of M; let X, Y, Z,.... denote such vector fields. We use
the same notation V for any other vector bundle V over M. Let
T;! (M) be also the C*(M)-module of TM ® T*M i.e. the real
space of tensor fields of (1, 1)-type on M. Let consider a fixed
F € T} (M) usually called affinor [10] or vector 1-form; the
remarkable affinior of every manifold is the kronecker tensor
field I = (57).

Fix u € +1,—1. Let now g be a Riemannian metric on M.

Definition 1 Let M be a (g, F, 1)-manifold and if

g(FX,Y)+ ug(X,FY) =0, 2.1)
then the geometry of the strucrure (M,g,F,l) is called
affinor-metric geometry. If in particular, F, is nondegener-
ate at any point x € M then we say that M is a nondegenerate
(g, F, u)-manifold otherwise, M is called degenerate (g,F, 11)-
manifold. The relation (2.1) says that the g-adjoint of F is
F=—ur~.



Now, let an n-dimensional submanifold N of M. Then the
main object induced by the Levi-Civita connection V of M on

N are involved in the well known Gauss-Weingarten equations

VxY =VxY+h(X,Y), X, YETN, (2.2)

VxN = —AyX+V3V, NeTN, (2.3)

where V, V and V' are the Riemannian, induced Riemannian
and induced normal connection in N, M and the normal bundle
TL+M of M, respectively, and % is the second fundamental form

related to A by the relation

g(h(X,Y),V) = g(AvX,Y). (2.4)

If ‘i vanishes identically on N, then N is called totally
geodesic.

The aim of present paper is to investigate the semi-invariant
éL-submanifolds in metric geometry of affinors. More pre-
cisely, we suppose that the structure vector field £ is orthogo-

nal to the submanifold N.

3. SEMI-INVARIANT r',‘L- SUBMANIFOLD IN

AFFINOR-METRIC GEOMETRY

Now, we consider a submanifold N of a (g, F, it)-manifold
M. Then g induces a Riemannain metric on N which we de-
note by the same symbol g. By following the definition given
by Bejancu [1], we say that NV is a semi-invariant éL- subman-
ifold if there exits two orthogonal distributions D and D in
TN such that TN = D@ DL. If D+ =0, then N is an invariant
éL- submanifold. The normal bundle can also be decomposed

as TNt = FD*- @ D, where FD C D. If D contains &.

Definition 2 N is a semi-invariant éL—submanij‘old of M if

there exists a distribution D on N satisfying the condition
1. D is F-invariant ie., F(Dy) C Dy, ¥ x €N

2. The complementary orthogonal distribution D* to D in
TN is F-anti-invariant that is, F(D*)CTAN, ¥V x €N,

3. F*(D%) is a distribution on N.
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Some particular classes of semi-invariant él-submanifolds
are defined as follows; Let p and q be the ranks of distribu-
tions D and D™ respectively. If g =0, i.e., D" = 0 then we say
that N is an F-invariant fL—submanij‘old of M. If p =0, that
is, D=0, we call N an F-antiinvariant él-submanifOId of M.
If pg # 0; then N is called a proper semi-invariant éL-
submanifold. We denote D the complementary orthogonal
vector bundle to FD* in T*N. If D =0, then we say that
N is normal F-invariant, (respectively F-antiinvariant) if and

only if
F(TN)CTN (resp. F(TN) C T*N).

N is normal F-semi-invariant &% if and only if F(D*Y) =
T+N.
(g, F, u)-manifold M. Denote P and Q the projection of TN

Let N be a semi-invariant éL-submanifold of a

on D and D respectively, namely for any X € TN

X =PX + QOX. 3.1
Moreover, for any X € TN and N € TN L we put

0X =tX +wX, (3.2)

0X =BX+CX 3.3)

withtX € D, BN € TN and wX,CN € TN~. We also consider,
for X € TN, the decomposition

FX =aX+BX, aXeD, BX e TNV, (3.4)

where we put :

a=FoPf3=FoQ. 3.5)

Thus « is a tensor field of (1,1)-type on N while 3 is a

F(D*)-valued vector 1-form on N. Thus we derive:
Proposition 1 Let N be a semi-invariant él-submanifold of
a (g, F, 1)-manifold M. Then

1. Nisa (g,a,uL)-manifold.

2. F2(D%) is a vector subbundle of D*.

3. The vector bundle D is F-invariant, i.e., for all x € N we

have F (D) C Dy. Hence D contains &.



Proof. (1) By the definition, g is a Riemannian metric on N
and o is a tensor field of type (1,1) on N. Now from Definition
(3.1) and using (2.1) for F we obtain for X,Y € TN

(2) Take X € D and Y € D+ in Definition(3.1) part 2,
g(X,F?Y) = —ug(FX,FY) = 0 since FX € D and FY €
TYN. Hence F*(D') is orthogonal to D and again by the
part (3) of Definition (3.1) we deduce that F*(D") is a vector
subbundle of D+

(3) Take X € TN, Y € D" and V € D. Then we obtain

§(FV,X) = —pug(V.FX)=—ug(V,aX +pX) =0
and
g(FV,FY) = —ug(V,F*Y) =0.

Since aX € D, BX € FD* and F*Y € D*. Thus FD is or-
thgonal to TN & FD*, that is FD is a vector subbundle of D

which contains &. This complete the proof of the proposition.
|

Corollary 2 Let N be a semi-invariant éL-submanifold of a

(g, F,u)-manifold M. Then

1. the above distribution satisfy:

F(D)=D, F*(D‘)=D", F(D)=D. (3.6)

2.if u = 41, then DY and F(DY) are

Lagrangian distribution on (TM,Q). In particular
if N is a normal semi-invariant éL—submanifold, then

TN is a Lagrangian submanifold in (TM,Q).

Proof. We need to proof only (2). Let X,Y € D, then
Q(X,Y) = g(FX,Y) = 0 since FX € T*N while Y € TN.
Again, let X,Y € D, then Q(X,Y) = g(FX,Y) = 0 since
FX € TN whileY € T*N R
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4. INTEGRABILITY OF DISTRIBUTIONS ON

SEMI-INVARIANT §L- SUBMANIFOLD IN
AFFINOR-METRIC GEOMETRY

Let N be a semi-invariant & -submanifold of a (g, F, 1t)-
manifold M. Then we use the Nijenhuis tensor field of F de-
fined as follows [1]

Np(X,Y)=[FX,FY]|+F?[X,Y] - F[FX,Y] - F|X,FY]
4.1
forany X,Y € TM. In a similar way, the Nijenhuis tensor field

of o on N is given by
No(X,Y)=[X,aY]+0o?[X,Y]—afaX,Y]—aX,aY] (4.2)

for any X,Y € TN. We recall that a tensor field of type (1, 1)
defines an integrable structure on a manifold if and only if
its Nijenhuis tensor field vanishes identically on the manifold.
Now we obtain necessary and sufficient conditions for the in-
tegrability of D and D™ in terms of Nijenhuis tensor fields of

F and o

Theorem 3 Let N be a semi-invariant él-submanifold of a
(g, F, 1w)-manifold M. Then the following assertions are equiv-

alent
1. D is and integrable distribution.

2. The Nijenhuis tensor field if a satisfies:

QoNg =0, Y X,Y €D. 4.3)

3. The Nijenhuis tensor fileds of F and o satisfy the equal-
ity, N = Ng on D

Proof. Firstly, we note that D is integrable if and only if

0([X,Y])=0, V X,YeD. (4.4)

Since the last three terms in the right side of (4.2) lie in D, so

we deduce that:

QoNy(X,Y)=Q([FX,FY]), VX,YeD. (4.5)

As M is nondegenerate we deduce that o is an automorphism

on D. Thus the equivalence of (1) and (2) follows directly.



Next, we obtain for any X,Y € D

Np[X, Y] =No(X,Y)+FB(X,Y]) = B([aX,Y]) - B([X,BY]).

(4.6)
If D is integrable, then the last three terms of (4.6) vanishes
and this yields (3). Conversely, suppose that Nr = N on D,

then

FBIX,Y] = B([aX,Y] +[X,aY]). 4.7)

Obviously the right hand side of the previous equation in in
F(D*) C T+N.On the other hand, the left hand side is in
F ZDJ-), we conclude that both sides in (4.7) must vanish.
Finaly, from F?>Q([X,Y]) = 0 and F?* automorphism of TM
we deduce (1). B

Now , we consider X,Y € DY, Then taking into account

that oX = oY =0 we get

Ny(X,Y)=F?P[X,Y] (4.8)

and this enables us to state the following theorem:

Theorem 4 Let N be a semi-invariant éL—submanifold of a
(g, F, u)-manifold M. Then D* is intetrable if and only if the

Nijenhuis tensor filed of o vanishes identically on D*.

5. NATURAL FOLIATION ON A SEMI-INVARIANT éL-

SUBMANIFOLD IN AFFINOR-METRIC GEOMETRY

Let V be the Levi-Civita connection on M with respect to
the Riemannian metric g. Then F is a parallel tensor field on

M if

VF =0. (5.1)

In this section we study the geometry of semi-invariant él-
submanifold of a (g, F, it)-manifold with parallel tensor field

F. First, we prove the following proposition

Proposition 5 Let N be a semi-invariant él-submanifold of
a (g, F,1)-manifold M with parallel tenor field F. Then for
allX,Y € D*

ArxY —ApyX = o([X,Y]). (5.2)
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Proof. By using the Weingarten formula and the parallelism

condition, we get

ApxY =VYyFX —VyFX =VyFX —F(VxY).  (5.3)

Writing a similar equation by interchanging X andY and then

using subtracting, we obtain

ArxY —ApyX =V yFX —VyFX — Vy FX + F([X,Y]),
5.4
since V is a torsion free linear connection. Thus (5.2) is ob-
tained by equalizing the tangent parts to N in the above equa-

tion.
Now, we can state the following main results:

Theorem 6 Let N be a semi-invariant él-submanifold of a
nondegenerate (g,Fu = +1)-manifold with parallel tensor
field F. Then the F — fL-anti-invariant distribution D* is
integrable.

Proof. Forany X,Y € D and Z € D we have

8(ApxY,Z)=—g(FVyX,Z) = +ug(VyX,FZ) = —ug(X,VyFZ) =

(5.5)
::uzg(FvaYZ) :[.ng(FX,[Y,Z]+sz) :“2g(vavZY)'

Also, we have

g(AryX,Z) = ug(FV2Y,X) = u*(VzY,FX). (5.6
Comparing (5.4) and (5.5) we deduce that for u = +1
g(ArxY —AryX,Z) =0 5.7
ApxY —ApyX €D (5.8)
and thus
ApxY —ApyX =0. (5.9)

which means that
ApxY —ApyX € D+

On the other hand, form (5.2), we conclude that Finally,
returning to (5.2) and taking into account that F is nondegen-

erate we deduce that

P[X,Y] =0,



that is, D is integrable. B

Regarding the integrability of D we prove the following:

Theorem 7 Let N be a semi-invariant él-submanifold of a
nondegenerate (g,F 1 = +1)-manifold with parallel tensor
field F. Then the F — él-anti-invariant distribution D is in-
tegrable if and only if the second fundamental form h of N
satisfies for any X,Y € D and Z € D+

g(h(X,aY) —h(Y,aX),FZ) =0 (5.10)

Proof. By using the Gauss formula we deduce that

VxaY +h(X,aX)=a(VxY)+B(VxY)+Fh(X,Y). (5.11)

Now interchanging X and Y and then subtracting we obtain.
VxoY —VyaX +h(X,aX)—h(Y,aX)=a(VxY)+B(VxY)+Fh(X,Y),
(5.12)
since h is symmetric and V is a torsion free linear connection.

Equalize the normal parts in the above equation, we obtain

h(X,aX)—h(Y,aX) = B([X,Y)). (5.13)

Now, suppose that D is integrable; then (5.7) is immediately.
Conversely, if (5.6) is satisfied, then with (5.10) we deduce
that

—ug(QX,Y],F?Z) =0. (5.14)

Since F is nondegenerate we refer that F? is an automorphism
of D* and hence D is integrable. W

Now, for u = 41 we denote by F* the natural foliation
defined by the F-anti-invariant distribution D and call it the
F — anti-invariant foliation on N. We recall that F* is called a
totally geodesic foliation if each leaf of F* is totally geodesic
immersed in N. Thus F* is totally geodesic if and only if the
Levi-Civita connection V of N satisfies for all Y,Z € D*

VyZ e (D). (5.15)

Theorem 8 Let N be a semi-invariant él-submanifold of a
nondegenerate (g, F . = +1)-manifold M with parallel tensor

field F. Then the following assertions are equivalent

1. The F-anti-invariant foliation is totally geodesic.
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2. The second fundamental form h of N satisfies for all

X,YeDandY € D+
h(X,Y) €D. (5.16)

3. D* is Ay-invariant for any V € F(D') that is we have
forallY € D+

AyY € D*. (5.17)
Proof. We have for any X € D andY,Z € D*-
8(VyZ,FX) =g(VyZ,FX) = —ug(VyFZ,X)  (5.18)

= ug(ArzY,X) = ug(h(X.Y),FZ).

Now, suppose V € F(DV) is totally geodesic, then the first
term of (5.18) vanishes. Hence the last term in (5.14) van-
ishes which implies (3). Conversely, suppose (5.18) is satis-
fied. Then from (5.16) we deduce (5.11) since F is an auto-
morphism of D. This proves the equivalence of (1) and (2).
The equivalence of (2) and (3) is straightforward. W

Finally, we can prove the following

Theorem 9 Let N be a semi-invariant él-submcmifold of a
nondegenerate (g, F L = +1)-manifold M with parallel tensor
field F. Then the F-invariant distribution D is integrable and
the foliation F(D*) defined by D is totally geodesic if and only
if the second fundamental form h of N satisfies for all XY € D

h(X.Y) €D (5.19)

Proof. D is integrable and F(D™) is totally geodesic if and
only ifforall X, U € D
VU € D. (5.20)
This is equivalent to
¢(VxU,Z) =0, (5.21)

for all Z € D*. As F is an automorphism of D, we can write

the above equality as follows

g(VxFY,Z) =0, (5.22)



forall X,Y € D and Z € D*, which is equivalent to
2(VxY,Z2) =0. (5.23)
By using the Gauss equation, the last realtion is equivalent to

g(h(X,Y),FZ) =0 (5.24)
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which completes the proof of the theorem.
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