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In this paper, we study semi-invariant ξ
⊥-submanifolds which endowed with a generalization of structured

manifolds as the most general Riemannian metric g associated to an affinor F . We have also investigate the

integrability conditions of both invariant and anti-invariant ditributions and characterizations for totally geodesic

case.
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1. INTRODUCTION

In the differential geometry the theory of submanifolds in

spaces endowed with additional structures has been inten-

sively studied and several important papers have been ap-

peared in this field. Let us mention only few of them: a series

of papers of B.Y. Chen (see, [5], [6], [7]), N. Papaghiuc (see

[11] [12])and A. Bejancu studied semi-invariant submanifold

for almost contact structure (see, [3] [4]) as well as almost

complex geometry [2] which had a great impact on developing

of the theory of submanifolds in which these ambient spaces,

for example A. Bejancu in [1] also studied QR-submanifolds

in quaternionic manifold and M. Barros et al. investigated CR-

submanifolds in quaternionic manifolds [5]. In [8] C. Calin

et al. studied the semi-invariant ξ
⊥ submanifolds of gener-

alized quasi-Saskian manifold. Moreover, N. C. Chiriac and

M. Crasmareanu studied semi-invariant submanifolds in met-

ric geometry of affinors [9]. The purpose of the present paper

is to investigate the semi-invariant ξ
⊥ -submanifolds in metric

geometry of affinors.
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2. PRELIMINARIES

Let M be an n-dimensional manifold for which we denote

by C∞(M), the algebra of smooth functions on M and by T M

the C∞(M)-module of smooth sections of the tangent bundle

T M of M; let X , Y , Z, .... denote such vector fields. We use

the same notation V for any other vector bundle V over M. Let

T 1
1 (M) be also the C∞(M)-module of T M⊗T ∗M i.e. the real

space of tensor fields of (1,1)-type on M. Let consider a fixed

F ∈ T 1
1 (M) usually called affinor [10] or vector 1-form; the

remarkable affinior of every manifold is the kronecker tensor

field I = (δ i
j).

Fix µ ∈+1,−1. Let now g be a Riemannian metric on M.

Definition 1 Let M be a (g,F,µ)-manifold and if

g(FX ,Y )+µg(X ,FY ) = 0, (2.1)

then the geometry of the strucrure (M,g,F,µ) is called

affinor-metric geometry. If in particular, Fx is nondegener-

ate at any point x ∈M then we say that M is a nondegenerate

(g,F,µ)-manifold otherwise, M is called degenerate (g,F,µ)-

manifold. The relation (2.1) says that the g-adjoint of F is

F =−µF∗.
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Now, let an n-dimensional submanifold N of M. Then the

main object induced by the Levi-Civita connection ∇̄ of M on

N are involved in the well known Gauss-Weingarten equations

∇̄XY = ∇XY +h(X ,Y ), X ,Y ∈ T N, (2.2)

∇̄X N =−AV X +∇
⊥
X V, N ∈ T⊥N, (2.3)

where ∇̄, ∇ and ∇
⊥ are the Riemannian, induced Riemannian

and induced normal connection in N, M and the normal bundle

T⊥M of M̄, respectively, and h is the second fundamental form

related to A by the relation

g(h(X ,Y ),V ) = g(AV X ,Y ). (2.4)

If ′h′ vanishes identically on N, then N is called totally

geodesic.

The aim of present paper is to investigate the semi-invariant

ξ
⊥-submanifolds in metric geometry of affinors. More pre-

cisely, we suppose that the structure vector field ξ is orthogo-

nal to the submanifold N.

3. SEMI-INVARIANT ξ
⊥- SUBMANIFOLD IN

AFFINOR-METRIC GEOMETRY

Now, we consider a submanifold N of a (g,F,µ)-manifold

M. Then g induces a Riemannain metric on N which we de-

note by the same symbol g. By following the definition given

by Bejancu [1], we say that N is a semi-invariant ξ
⊥- subman-

ifold if there exits two orthogonal distributions D and D⊥ in

T N such that T N = D⊕D⊥. If D⊥ = 0, then N is an invariant

ξ
⊥- submanifold. The normal bundle can also be decomposed

as T N⊥ = FD⊥⊕ D̄, where FD̄⊆ D̄. If D̄ contains ξ .

Definition 2 N is a semi-invariant ξ
⊥-submanifold of M if

there exists a distribution D on N satisfying the condition

1. D is F-invariant ie., F(Dx)⊂ Dx, ∀ x ∈ N

2. The complementary orthogonal distribution D⊥ to D in

T N is F-anti-invariant that is, F(D⊥)⊆T⊥x N, ∀ x∈N,

3. F2(D⊥) is a distribution on N.

Some particular classes of semi-invariant ξ
⊥-submanifolds

are defined as follows; Let p and q be the ranks of distribu-

tions D and D⊥ respectively. If q = 0, i.e., D⊥ = 0 then we say

that N is an F-invariant ξ
⊥-submanifold of M. If p = 0, that

is, D = 0, we call N an F-antiinvariant ξ
⊥-submanifold of M.

If pq 6= 0; then N is called a proper semi-invariant ξ
⊥-

submanifold. We denote D̄ the complementary orthogonal

vector bundle to FD⊥ in T⊥N. If D̄ = 0, then we say that

N is normal F-invariant, (respectively F-antiinvariant) if and

only if

F(T N)⊂ T N (resp. F(T N)⊂ T⊥N).

N is normal F-semi-invariant ξ
⊥ if and only if F(D⊥) =

T⊥N. Let N be a semi-invariant ξ
⊥-submanifold of a

(g,F,µ)-manifold M. Denote P and Q the projection of T N

on D and D⊥ respectively, namely for any X ∈ T N

X = PX +QX . (3.1)

Moreover, for any X ∈ T N and N ∈ T N⊥, we put

φX = tX +wX , (3.2)

φX = BX +CX (3.3)

with tX ∈D, BN ∈ T N and wX ,CN ∈ T N⊥. We also consider,

for X ∈ T N, the decomposition

FX = αX +βX , αX ∈ D, βX ∈ T NN , (3.4)

where we put :

α = F ◦P,β = F ◦Q. (3.5)

Thus α is a tensor field of (1,1)-type on N while β is a

F(D⊥)-valued vector 1-form on N. Thus we derive:

Proposition 1 Let N be a semi-invariant ξ
⊥-submanifold of

a (g,F,µ)-manifold M. Then

1. N is a (g,α,µ)-manifold.

2. F2(D⊥) is a vector subbundle of D⊥.

3. The vector bundle D̄ is F-invariant, i.e., for all x ∈ N we

have F(D̄)⊂ D̄x. Hence D̄ contains ξ .
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Proof. (1) By the definition, g is a Riemannian metric on N

and α is a tensor field of type (1,1) on N. Now from Definition

(3.1) and using (2.1) for F we obtain for X ,Y ∈ T N

g(αX ,Y ) = g(FPX ,Y ) = g(FPX ,PY ) =−µg(PX ,FPY )

= µg(X ,FPY ) =−µg(X ,αY ).

(2) Take X ∈ D and Y ∈ D⊥ in Definition(3.1) part 2,

g(X ,F2Y ) = −µg(FX ,FY ) = 0 since FX ∈ D and FY ∈

T⊥N. Hence F2(D⊥) is orthogonal to D and again by the

part (3) of Definition (3.1) we deduce that F2(D⊥) is a vector

subbundle of D⊥.

(3) Take X ∈ T N, Y ∈ D⊥ and V ∈ D̄. Then we obtain

g(FV,X) =−µg(V,FX) =−µg(V,αX +βX) = 0

and

g(FV,FY ) =−µg(V,F2Y ) = 0.

Since αX ∈ D, βX ∈ FD⊥ and F2Y ∈ D⊥. Thus FD̄ is or-

thgonal to T N⊕FD⊥, that is FD̄ is a vector subbundle of D̄

which contains ξ . This complete the proof of the proposition.

Corollary 2 Let N be a semi-invariant ξ
⊥-submanifold of a

(g,F,µ)-manifold M. Then

1. the above distribution satisfy:

F(D) = D, F2(D⊥) = D⊥, F(D̄) = D̄. (3.6)

2. if µ = +1, then D⊥ and F(D⊥) are

Lagrangian distribution on (T M,Ω). In particular

if N is a normal semi-invariant ξ
⊥-submanifold, then

T⊥N is a Lagrangian submanifold in (T M,Ω).

Proof. We need to proof only (2). Let X ,Y ∈ D⊥, then

Ω(X ,Y ) = g(FX ,Y ) = 0 since FX ∈ T⊥N while Y ∈ T N.

Again, let X ,Y ∈ D⊥, then Ω(X ,Y ) = g(FX ,Y ) = 0 since

FX ∈ T N while Y ∈ T⊥N

4. INTEGRABILITY OF DISTRIBUTIONS ON

SEMI-INVARIANT ξ
⊥- SUBMANIFOLD IN

AFFINOR-METRIC GEOMETRY

Let N be a semi-invariant ξ
⊥-submanifold of a (g,F,µ)-

manifold M. Then we use the Nijenhuis tensor field of F de-

fined as follows [1]

NF(X ,Y ) = [FX ,FY ]+F2[X ,Y ]−F [FX ,Y ]−F [X ,FY ]

(4.1)

for any X ,Y ∈ T M. In a similar way, the Nijenhuis tensor field

of α on N is given by

Nα(X ,Y ) = [X ,αY ]+α
2[X ,Y ]−α[αX ,Y ]−α[X ,αY ] (4.2)

for any X ,Y ∈ T N. We recall that a tensor field of type (1,1)

defines an integrable structure on a manifold if and only if

its Nijenhuis tensor field vanishes identically on the manifold.

Now we obtain necessary and sufficient conditions for the in-

tegrability of D and D⊥ in terms of Nijenhuis tensor fields of

F and α

Theorem 3 Let N be a semi-invariant ξ
⊥-submanifold of a

(g,F,µ)-manifold M. Then the following assertions are equiv-

alent

1. D is and integrable distribution.

2. The Nijenhuis tensor field if α satisfies:

Q◦Nα = 0, ∀ X ,Y ∈ D. (4.3)

3. The Nijenhuis tensor fileds of F and α satisfy the equal-

ity, NF = Nα on D

Proof. Firstly, we note that D is integrable if and only if

Q([X ,Y ]) = 0, ∀ X ,Y ∈ D. (4.4)

Since the last three terms in the right side of (4.2) lie in D, so

we deduce that:

Q◦Nα(X ,Y ) = Q([FX ,FY ]), ∀X ,Y ∈ D. (4.5)

As M is nondegenerate we deduce that α is an automorphism

on D. Thus the equivalence of (1) and (2) follows directly.
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Next, we obtain for any X ,Y ∈ D

NF [X ,Y ] = Nα(X ,Y )+Fβ ([X ,Y ])−β ([αX ,Y ])−β ([X ,βY ]).

(4.6)

If D is integrable, then the last three terms of (4.6) vanishes

and this yields (3). Conversely, suppose that NF = Nα on D,

then

Fβ [X ,Y ] = β ([αX ,Y ]+ [X ,αY ]). (4.7)

Obviously the right hand side of the previous equation in in

F(D⊥) ⊂ T⊥N.On the other hand, the left hand side is in

F2D⊥), we conclude that both sides in (4.7) must vanish.

Finaly, from F2Q([X ,Y ]) = 0 and F2 automorphism of T M

we deduce (1).

Now , we consider X ,Y ∈ D⊥. Then taking into account

that αX = αY = 0 we get

Nα(X ,Y ) = F2P[X ,Y ] (4.8)

and this enables us to state the following theorem:

Theorem 4 Let N be a semi-invariant ξ
⊥-submanifold of a

(g,F,µ)-manifold M. Then D⊥ is intetrable if and only if the

Nijenhuis tensor filed of α vanishes identically on D⊥.

5. NATURAL FOLIATION ON A SEMI-INVARIANT ξ
⊥-

SUBMANIFOLD IN AFFINOR-METRIC GEOMETRY

Let ∇̄ be the Levi-Civita connection on M with respect to

the Riemannian metric g. Then F is a parallel tensor field on

M if

∇̄F = 0. (5.1)

In this section we study the geometry of semi-invariant ξ
⊥-

submanifold of a (g,F,µ)-manifold with parallel tensor field

F . First, we prove the following proposition

Proposition 5 Let N be a semi-invariant ξ
⊥-submanifold of

a (g,F,µ)-manifold M with parallel tenor field F. Then for

all X ,Y ∈ D⊥

AFXY −AFY X = α([X ,Y ]). (5.2)

Proof. By using the Weingarten formula and the parallelism

condition, we get

AFXY = ∇
⊥

Y FX−∇Y FX = ∇
⊥
Y FX−F(∇̄XY ). (5.3)

Writing a similar equation by interchanging X and Y and then

using subtracting, we obtain

AFXY −AFY X = ∇
⊥

Y FX−∇Y FX−∇
⊥
Y FX +F([X ,Y ]),

(5.4)

since ∇ is a torsion free linear connection. Thus (5.2) is ob-

tained by equalizing the tangent parts to N in the above equa-

tion.

Now, we can state the following main results:

Theorem 6 Let N be a semi-invariant ξ
⊥-submanifold of a

nondegenerate (g,Fµ = +1)-manifold with parallel tensor

field F. Then the F − ξ
⊥-anti-invariant distribution D⊥ is

integrable.

Proof. For any X ,Y ∈ D⊥ and Z ∈ D we have

g(AFXY,Z)=−g(F∇̄Y X ,Z)=+µg(∇̄Y X ,FZ)=−µg(X , ∇̄Y FZ)=

(5.5)

= µ
2g(FX , ∇̄Y Z) = µ

2g(FX , [Y,Z]+ ∇̄ZY ) = µ
2g(FX , ∇̄ZY ).

Also, we have

g(AFY X ,Z) = µ
2g(F∇ZY,X) = µ

3(∇̄ZY,FX). (5.6)

Comparing (5.4) and (5.5) we deduce that for µ =+1

g(AFXY −AFY X ,Z) = 0 (5.7)

AFXY −AFY X ∈ D (5.8)

and thus

AFXY −AFY X = 0. (5.9)

which means that

AFXY −AFY X ∈ D⊥

On the other hand, form (5.2), we conclude that Finally,

returning to (5.2) and taking into account that F is nondegen-

erate we deduce that

P[X ,Y ] = 0,
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that is, D⊥ is integrable.

Regarding the integrability of D we prove the following:

Theorem 7 Let N be a semi-invariant ξ
⊥-submanifold of a

nondegenerate (g,Fµ = +1)-manifold with parallel tensor

field F. Then the F − ξ
⊥-anti-invariant distribution D is in-

tegrable if and only if the second fundamental form h of N

satisfies for any X ,Y ∈ D and Z ∈ D⊥

g(h(X ,αY )−h(Y,αX),FZ) = 0 (5.10)

Proof. By using the Gauss formula we deduce that

∇X αY +h(X ,αX)=α(∇XY )+β (∇XY )+Fh(X ,Y ). (5.11)

Now interchanging X and Y and then subtracting we obtain.

∇X αY −∇Y αX +h(X ,αX)−h(Y,αX) = α(∇XY )+β (∇XY )+Fh(X ,Y ),

(5.12)

since h is symmetric and ∇ is a torsion free linear connection.

Equalize the normal parts in the above equation, we obtain

h(X ,αX)−h(Y,αX) = β ([X ,Y ]). (5.13)

Now, suppose that D is integrable; then (5.7) is immediately.

Conversely, if (5.6) is satisfied, then with (5.10) we deduce

that

−µg(Q[X ,Y ],F2Z) = 0. (5.14)

Since F is nondegenerate we refer that F2 is an automorphism

of D⊥ and hence D is integrable.

Now, for µ = +1 we denote by F⊥ the natural foliation

defined by the F-anti-invariant distribution D⊥ and call it the

F−anti-invariant foliation on N. We recall that F⊥ is called a

totally geodesic foliation if each leaf of F⊥ is totally geodesic

immersed in N. Thus F⊥ is totally geodesic if and only if the

Levi-Civita connection ∇ of N satisfies for all Y,Z ∈ D⊥

∇Y Z ∈ (D⊥). (5.15)

Theorem 8 Let N be a semi-invariant ξ
⊥-submanifold of a

nondegenerate (g,Fµ =+1)-manifold M with parallel tensor

field F. Then the following assertions are equivalent

1. The F-anti-invariant foliation is totally geodesic.

2. The second fundamental form h of N satisfies for all

X ,Y ∈ D and Y ∈ D⊥

h(X ,Y ) ∈ D̄. (5.16)

3. D⊥ is AV -invariant for any V ∈ F(D⊥) that is we have

for all Y ∈ D⊥

AVY ∈ D⊥. (5.17)

Proof. We have for any X ∈ D and Y,Z ∈ D⊥

g(∇Y Z,FX) = g(∇̄Y Z,FX) =−µg(∇̄Y FZ,X) (5.18)

= µg(AFZY,X) = µg(h(X ,Y ),FZ).

Now, suppose V ∈ F(D⊥) is totally geodesic, then the first

term of (5.18) vanishes. Hence the last term in (5.14) van-

ishes which implies (3). Conversely, suppose (5.18) is satis-

fied. Then from (5.16) we deduce (5.11) since F is an auto-

morphism of D. This proves the equivalence of (1) and (2).

The equivalence of (2) and (3) is straightforward.

Finally, we can prove the following

Theorem 9 Let N be a semi-invariant ξ
⊥-submanifold of a

nondegenerate (g,Fµ =+1)-manifold M with parallel tensor

field F. Then the F-invariant distribution D is integrable and

the foliation F(D⊥) defined by D is totally geodesic if and only

if the second fundamental form h of N satisfies for all X ,Y ∈D

h(X ,Y ) ∈ D̄ (5.19)

Proof. D is integrable and F(D⊥) is totally geodesic if and

only if for all X ,U ∈ D

∇XU ∈ D. (5.20)

This is equivalent to

g(∇̄XU,Z) = 0, (5.21)

for all Z ∈ D⊥. As F is an automorphism of D, we can write

the above equality as follows

g(∇̄X FY,Z) = 0, (5.22)
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for all X ,Y ∈ D and Z ∈ D⊥, which is equivalent to

g(∇̄XY,Z) = 0. (5.23)

By using the Gauss equation, the last realtion is equivalent to

g(h(X ,Y ),FZ) = 0 (5.24)

which completes the proof of the theorem.
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