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In this study, we define new generalizations for Jacobsthal and Jacobsthal Lucas sequences called

p(x)−Jacobsthal and p(x)−Jacobsthal Lucas polynomial sequences where p(x) is any real valued

polynomial. We get the Binet formulae, generating functions, and some important properties for

these sequences. And then we describe a matrix whose elements are of p(x)−Jacobsthal terms.

By using this matrix we derive some properties for p(x)−Jacobsthal and p(x)−Jacobsthal Lucas

polynomial sequences
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I. INTRODUCTION AND PRELIMINARIES

Special integer sequences are encountered in different

branches of science, art, nature, the structure of our

body. So it is a popular topic in applied mathemat-

ics. Generalization of special integer sequences has been

studied by many researchers by using various approaches,

such as changing the initial conditions or adding new pa-

rameters to the recurrence relations, changing the recur-

rence relation with respect to parity of index n. There

are so many studies about Fibonacci numbers (the first

known special integer sequence). A generalization of Fi-

bonacci numbers, the Fibonacci polynomials are stud-

ied by Catalan and defined by the recurrence relation

Fn(x) = xFn−1(x) + Fn−2(x), F0(x) = 0, F1(x) = 1. Simi-

larly another generalization sequence, the Lucas polyno-

mials are defined by ln(x) = xln−1(x)+ ln−2(x), l0(x) = 2,

l1(x) = x . Swammy in [10] defined the generalized Fi-

bonacci and Lucas polynomials and their diagonal poly-
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nomials. In [11] Catalini gave some properties of bivari-

ate Fibonacci and bivariate Lucas polynomials. Djordje-

vic considered the generating functions, explicit formulas

for generalized Fibonacci and Lucas polynomials in [12].

Our paper is about Jacobsthal and Jacobsthal Lu-

cas numbers. So first of all we want to give the recur-

rence relations for Jacobsthal and Jacobsthal Lucas se-

quences as jn = jn−1 + 2 jn−2, j0 = 0, j1 = 1 and cn =

cn−1 + 2cn−2, c0 = 2, c1 = 1 for n ≥ 2, respectively in [3].

There are some generalizations of these integer sequences.

For example,; the Jacobsthal and the Jacobsthal Lucas

polynomial sequences sequences are defined recurrently

by ̂n(x) = ̂n−1(x) + 2x ̂n−2(x), ̂0(x) = 0, ̂1(x) =

1, n ≥ 2 and ĉn(x) = ĉn−1(x) + 2xĉn−2(x), ĉ0 =

2, ĉ1 = 1, n ≥ 2 in [5]. And another generaliza-

tion of Jacosthal sequences is given in [7] as jn(s, t) =

s jn−1(s, t) + 2t jn−2(s, t), j0(s, t) = 0, j1(s, t) = 1 and

cn(s, t) = scn−1(s, t) + 2tcn−2(s, t), c0(s, t) = 2, c1(s, t) = 1

for n ≥ 2.

The object of this paper is to define a new general-

ization of Jacobsthal and Jacobsthal Lucas sequences by
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using polynomials as called p(x)-Jacobsthal polynomial

Jp,n(x) and p(x)-Jacobsthal Lucas polynomial Cp,n(x)

and record some basic properties of Jp,n(x) and Cp,n(x).

II. THE P(X)-JACOBSTHAL AND

P(X)-JACOBSTHAL LUCAS POLYNOMIALS

AND THEIR PROPERTIES

Definition 1 Assume that p(x) is a polynomial with real

coefficients and n ≥ 2 any integer. The p(x)-Jacobsthal

polynomial
{

Jp,n(x)
}
n∈N

sequences are described by using

the following recurrence relation

Jp,n(x) = p(x)Jp,n−1(x) + 2Jp,n−2(x) (2.1)

with initial conditions are Jp,0(x) = 0, Jp,1(x) =

1,and p(x)-Jacobsthal Lucas polynomial
{
Cp,n(x)

}
n∈N

se-

quences

Cp,n(x) = p(x)Cp,n−1(x) + 2Cp,n−2(x) (2.2)

with initial conditions are Cp,0(x) = 2, Cp,1(x) = p(x).

Initially, the polynomials are defined for only positive

terms but their existence for n < 0 is readily obtained,

yielding

Jp,−n(x) = −Jp,n(x)/(−2)n,

Cp,−n(x) = Cp,n(x)/(−2)n.

The first some terms of p(x)-Jacobsthal polynomials

are Jp,1(x) = 1, Jp,2(x) = p(x), Jp,3(x) = p2(x) + 2,

Jp,4(x) = p3(x) + 4p(x).

And the first some terms of p(x)-Jacobsthal Lucas

polynomials are Cp,1(x) = p(x), Cp,2(x) = p2(x) + 4,

Cp,3(x) = p3(x) + 6p(x), Cp,4(x) = p4(x) + 8p2(x) + 8.

Special numerical choices for p(x)-Jacobsthal poly-

nomial and p(x)-Jacobsthal Lucas polynomial are: If

p(x) = 1, then we get classic Jacobsthal and Jacob-

sthal Lucas sequences. If p(x) = k, then we get classic

k−Jacobsthal and k−Jacobsthal Lucas sequences.The

characteristic equation of recurrence relation for p(x)-

Jacobsthal polynomial and p(x)-Jacobsthal Lucas poly-

nomial is

r2 − p(x)r − 2 = 0.

The roots of the characteristic equation are

α(x) =
p(x) +

√
p2(x) + 8
2

, β(x) =
p(x) −

√
p2(x) + 8
2

(2.3)
with the following properties

α(x)+β(x) = p(x), α(x)−β(x) =
√
p2 (x) + 8, α(x).β(x) = −2.

(2.4)

Lemma 2 The Binet formulas for these sequences are

Jp,n(x) =
αn(x) − βn(x)
α(x) − β(x)

, (2.5)

Cp,n(x) = αn(x) + βn(x). (2.6)

Proof. The proof is obtained easily by using the values

of the first two terms of Jp,n(x) and Cp,n(x).

Theorem 3 (The generating function) Let i, j any

natural numbers and ���α
i (x)t��� < 1 and ���β

i (x)t��� < 1. Then

the generating functions of these sequences for different

indices are obtained as
∞∑
n=0

Jp,in+j (x)tn =
Jp, j (x) + (−2) j Jp,i−j (x)t

1 − Cp,i (x)t + (−2)i t2
, (2.7)

∞∑
n=0

Cp,in+j (x)tn =
Cp, j (x) − (−2) jCp,i−j (x)t

1 − Cp,i (x)t + (−2)i t2
. (2.8)

Proof. By using Binet formula for p(x)-Jacobsthal poly-

nomial sequence, we get
∞∑
n=0

Jp,in+j (x)tn =
∞∑
n=0

αin+j (x) − βin+j (x)
α(x) − β(x)

tn

=
1

α(x) − β(x)


α j
∞∑
n=0

(
αit

)n
− β j

∞∑
n=0

(
βit

)n

=
1

α(x) − β(x)

[
α j

1 − αi (x)t
−

β j

1 − βi (x)t

]

=

(
α j (x) − β j (x)

)
+ (−2) j

(
αi−j (x) − βi−j (x)

)
t

α(x) − β(x)
(
1 − t

(
αi (x) + βi (x)

)
+ t2 (−2)i

)
=

Jp, j (x) + (−2) j Jp,i−j (x)t

1 − Cp,i (x)t + (−2)i t2
.
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The other part of the proof is done by using the same

method.

Some examples for different values of i, j are given as
∞∑
n=0

Jp,n(x)tn =
t

1 − p(x)t − 2t2
,

∞∑
n=0

Cp,n(x)tn =
2 − p(x)t

1 − p(x)t − 2t2

∞∑
n=0

Jp,2n(x)tn =
p(x)t

1 − (p2(x) + 4)t + 4t2
,

∞∑
n=0

Cp,2n(x)tn = =
2 − (p2(x) + 4)t

1 − (p2(x) + 4)t + 4t2

∞∑
n=0

Jp,2n+1(x)tn =
1 − 2t

1 − (p2(x) + 4)t + 4t2
,

∞∑
n=0

Cp,2n+1(x)tn =
p(x) + 2p(x)t

1 − (p2(x) + 4)t + 4t2

Theorem 4 (Explicit closed form) Let n ≥ 1

Jp,n (x) = 2−n+1

⌊
n−1
2

⌋∑
i=0

*.
,

n

2i + 1

+/
-

(p(x))n−2i−1
(√

p2 (x) + 8
)2i

(2.9)

Cp,n (x) = 2

b n2 c∑
i=0

*.
,

n

2i

+/
-

(p(x))n−2i
(
p2 (x) + 8

) i
(2.10)

Proof.

αn (x) − βn (x) = [(p(x) +
√
p2 (x) + 8)n − (p(x) −

√
p2 (x) + 8)n ]/2n

= 2−n
n∑
i=0

*.
,

n

i

+/
-

(p(x))n−i


(√
p2 (x) + 8

) i
−

(
−
√
p2 (x) + 8

) i 

= 2−n+1

⌊
n−1
2

⌋∑
i=0

*.
,

n

2i + 1

+/
-

(p(x))n−2i−1
(√

p2 (x) + 8
)2i+1

Jp,n(x) =
αn(x) − βn(x)
α(x) − β(x)

= 2−n+1
b n−12 c∑
i=0

*.
,

n

2i + 1
+/
-

(p(x))n−2i−1
(√

p2(x) + 8
)2i

αn (x) + βn (x) = [(p(x) +
√
p2 (x) + 8)n + (p(x) −

√
p2 (x) + 8)n ]

=

n∑
i=0

*.
,

n

i

+/
-

(p(x))n−i


(√
p2 (x) + 8

) i
+

(
−
√
p2 (x) + 8

) i 

= 2

b n2 c∑
i=0

*.
,

n

2i

+/
-

(p(x))n−2i
(
p2 (x) + 8

) i

Theorem 5 We can also find explicit closed form by us-

ing the generating function for Jp,n(x) and Cp,n(x). Let

n ≥ 1 any integer,

Jp,n(x) =
b n−12 c∑
i=0

*.
,

n − 1 − i

i
+/
-

(p(x))n−1−2i2i (2.11)

Cp,n(x) =
b n2 c∑
i=0

n
n − i

*.
,

n − i

i
+/
-

(p(x))n−2i2i (2.12)

Proof.
∞∑
n=0

Jp,n(x)tn =
t

1 − p(x)t − 2t2
= t

∞∑
n=0

(
p(x)t + 2t2

)n
= t

∞∑
n=0

n∑
i=0

*.
,

n

i
+/
-

(p(x)t)n−i
(
2t2

) i
=

∞∑
n=0

n∑
i=0

*.
,

n

i
+/
-

(p(x))n−i 2itn+i+1

=

∞∑
n=0

b n−12 c∑
i=0

*.
,

n − i − 1

i
+/
-

(p(x))n−2i−1 2itn

From the equality of both sides, the desired result ob-

tained.

Corollary 6

dCp,n(x)
dx

= nJp,n(x)
dp(x)

dx

Proof. From (2.12), we get

dCp,n(x)
dx

=
*.
,

b n2 c∑
i=0

n
n − i

*.
,

n − i

i
+/
-

(p(x))n−2i2i+/
-

′

=
dp(x)

dx

b n2 c∑
i=0

n(n − 2i)
n − i

*.
,

n − i

i
+/
-

(p(x))n−2i−12i

=
dp(x)

dx

b n2 c∑
i=0

n(n − 2i)(n − i)!
(n − i)(n − 2i)!i!

(p(x))n−2i−12i

=
dp(x)

dx

b n−12 c∑
i=0

n(n − i − 1)!
(n − 2i − 1)!i!

(p(x))n−2i−12i

=
dp(x)

dx

b n−12 c∑
i=0

*.
,

n − 1 − i

i
+/
-

n(p(x))n−1−2i2i

(Important Relationships)

Important elementary relationships involving Jp,n(x)

and Cp,n(x) follow with the aid of (2.1)-(2.6)
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a) Jp,n(x)Cp,n(x) = Jp,2n(x),

b) Cp,n(x) = Jp,n+1(x) + 2Jp,n−1(x) = p(x)Jp,n(x) +

4Jp,n−1(x),

c) (p2(x) + 8)Jp,n(x) = Cp,n+1(x) + 2Cp,n−1(x),

d) p(x)Jp,n(x) + Cp,n(x) = 2Jp,n+1(x),

e) (p2(x) + 8)Jp,n(x) + p(x)Cp,n(x) = 2Cp,n+1(x),

f)
√

p2(x) + 8Jp,n(x) + Cp,n(x) = 2αn,

g)
√

p2(x) + 8Jp,n(x) − Cp,n(x) = −2βn,

h) C2
p,n+2(x) + 2C2

p,n+1(x) = Cp,2n+4(x) + 2Cp,2n+2(x),

i) J2
p,n+1(x) + 2J2

p,n(x) = Jp,2n+1(x).

j) Cp,2n(x) = J2
p,n(x)

(
p2(x) + 8

)
+ 2(−2)n

k) C2
p,n(x) = Cp,2n(x) + 2(−2)n

l)
(
p2(x) + 8

)
J2
p,n(x) = Cp,2n(x) − 2(−2)n

m) Cp,3n(x) = Cp,n(x)(Cp,2n(x) − (−2)n)

n) Jp,3n(x) = Jp,n(x)(Cp,2n(x) + (−2)n)

o) C2
p,n(x) − (p2(x) + 8)J2

p,n(x) = 4(−2)n

p) J2
p,n+1(x) − 4J2

p,n−1(x) = p(x)Jp,2n(x).

Theorem 7 (D’ocagne’s property)

Let n ≥ m and n,m ∈ Z+. For p(x)- Jacobsthal and

p(x)- Jacobsthal Lucas polynomial sequences, we have

Jp,m+1(x)Jp,n(x) − Jp,m(x)Jp,n+1(x) = (−2)mJp,n−m(x).

Cp,m+1 (x)Cp,n (x) −Cp,m (x)Cp,n+1 (x) = −
√
p2 (x) + 8(−2)mCp,n−m (x).

Proof. By using Binet formula, we have

Jp,m+1(x)Jp,n(x) − Jp,m(x)Jp,n+1(x)

=
αm+1(x) − βm+1(x)

α(x) − β(x)
αn(x) − βn(x)
α(x) − β(x)

−
αm(x) − βm(x)
α(x) − β(x)

αn+1(x) − βn+1(x)
α(x) − β(x)

=
1

(α(x) − β(x))2



αn(x) βm(x)(α(x) − β(x))

−αm(x) βn(x)(α(x) − β(x))


=

1

α(x) − β(x)
[(α(x) β(x))m(α(x)n−m − β(x)n−m)]

=
1

α(x) − β(x)
[(−2)m (α(x)n−m − β(x)n−m)] .

The D’ocagne’s property for p(x)- Jacobsthal Lucas

polynomial sequences can readily seen by using the same

method.

Theorem 8 (Catalan’s property)

Assume that n, r ∈ Z+. For p(x)- Jacobsthal and p(x)-

Jacobsthal Lucas polynomial sequences, we have

Jp,n+r (x)Jp,n−r (x) − J2
p,n(x) = −(−2)n−r J2

p,r (x)

Cp,n+r (x)Cp,n−r (x) − C2
p,n(x) = (−2)n−r J2

p,r (x)(p2(x) + 8).

Proof. The proof is readily obtained by Binet formula.

Theorem 9 (Cassini’s property or Simpson prop-

erty)

For n ∈ Z+, we have

Jp,n+1(x)Jp,n−1(x) − J2
p,n(x) = −(−2)n−1

Cp,n+1(x)Cp,n−1(x) − C2
p,n(x) = (−2)n−1(p2(x) + 8).

We get these properties by substituting 1 for r in Cata-

lan property.

Theorem 10

Cp,4n (x) + 22n+1 = (p2 (x) + 8)J2
p,n (x)

2Cp,2n (x) = (p2 (x) + 8)Jp,n+1 (x)Jp,n−1 (x) −Cp,n+1 (x)Cp,n−1 (x)
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Proof. The proof is readily obtained by Binet formula.

Theorem 11 By this theorem we get new relations be-

tween the roots α, β and p(x)- Jacobsthal and p(x)-

Jacobsthal Lucas polynomial sequences.

αn(x) = α(x)Jp,n(x) + 2Jp,n−1(x),

βn(x) = β(x)Jp,n(x) + 2Jp,n−1(x),

√
p2(x) + 8αn(x) = α(x)Cp,n(x) + 2Cp,n−1(x),

−

√
p2(x) + 8βn(x) = β(x)Cp,n(x) + 2Cp,n−1(x).

Proof. We prove by using Binet formula and the product
of the roots,

β(x)Jp,n (x) + 2Jp,n−1 (x)

= β(x)
αn (x) − βn (x)
α(x) − β(x)

+ 2
αn−1 (x) − βn−1 (x)

α(x) − β(x)

=
1

α(x) − β(x)

[
β(x)

(
αn (x) − βn (x)

)
+ 2

(
αn−1 (x) − βn−1 (x)

)]

=
1

α(x) − β(x)

(
−2αn−1 (x) − βn+1 (x) + 2αn−1 (x) − 2βn−1 (x)

)
=

1

α(x) − β(x)

[
−βn−1 (x)

(
β2 (x) + 2

)]
= βn (x).

Other proofs can be done by using the same way.

Theorem 12 For p(x)- Jacobsthal polynomial se-

quences, we get

Jp,4n+k (x) − 22n.Jp,k (x) = Jp,2n(x)Cp,2n+k (x),

Jp,4n+k (x) + 22n.Jp,k (x) = Cp,2n(x)Jp,2n+k (x),

Jp,3n+k (x) − (−2)n .Jp,n+k (x) = Jp,n(x)Cp,2n+k (x),

Jp,3n+k (x) + (−2)n .Jp,n+k (x) = Cp,n(x)Jp,2n+k (x),

where n ≥ 1, p ≥ 0.

It can be proved by using Binet formulas as the follow-

ing theorem.

Theorem 13 For p(x)-Jacobsthal Lucas polynomial se-

quence, we have

Cp,4n+k (x) − 22n.Cp,k (x) = (p2(x) + 8)Jp,2n(x)Jp,2n+k (x),

Cp,4n+k (x) + 22n.Cp,n(x) = Cp,2n(x)Cp,2n+k (x),

Cp,3n+k (x)−(−2)n .Cp,n+k (x) = (p2(x)+8)Jp,n(x)Jp,2n+k (x),

Cp,3n+k (x) + (−2)n Cp,n+k (x) = .Cp,n(x).Cp,2n+k (x),

Theorem 14 Assume that A0(x) = [0] and An(x) is a

nxn tridigional matrix defined as

An(x) =



1 i

0 p(x) i .

i p(x) .

. . .

. . .

. . i

i p(x)



where i =
√
−1 and n ≥ 0. Then

det An(x) = Jp,n(x).

Proof. The proof is made by mathematical induction
method. For n = 0, 1, we have det A0(x) = Jp,0(x) = 0

and det A1(x) = Jp,1(x) = 1. Assume that det An−1(x) =
Jp,n−1(x), det An(x) = Jp,n(x) for n > 2.

det An+1 (x) = p(x) det An (x)−2i2 det An−1 (x) = p(x)Jp,n (x)+2Jp,n−1 (x).

Theorem 15 Assume that Bn(x) is a nxn tridigional

matrix defined as

Bn(x) =



2 2i

0 p(x)/2 2i .

i p(x) .

. . .

. . .

. . 2i

i p(x)


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where i =
√
−1 and n ≥ 0. Then

det Bn(x) = Cp,n−1(x).

Proof. The proof is obtaied by using the proof of The-

orem 14.

III. MATRIX FORM OF p(x)−JACOBSTHAL

AND p(x)−JACOBSTHAL LUCAS POLYNOMIAL

SEQUENCES

We demonstrate that the matrix

Jp =


p(x) 2

1 0


(3.1)

generates p(x)-Jacobsthal polynomials and p(x)-

Jacobsthal Lucas polynomials, use it to deduce some

identities of these polynomials.

Theorem 16 Let n is a positive integer. Then

Jn
p =



Jp,n+1(x) 2Jp,n(x)

Jp,n(x) 2Jp,n−1(x)


(3.2)

Proof. We use induction method for proof. We can

easily see the assertion is true for n = 1. Assume that the

statement is true for m ≤ n. We want to show the result

is also true for n + 1.

Jn+1
p = Jn

p Jp =


Jp,n+1(x) 2Jp,n(x)

Jp,n(x) 2Jp,n−1(x)





p(x) 2

1 0



=



Jp,n+2(x) 2Jp,n+1(x)

Jp,n+1(x) 2Jp,n(x)


.

From this theorem we can write the following property

for p(x)-Jacobsthal polynomials



Jp,n+1(x)

Jp,n(x)


= Jn

p



1

0


. (3.3)

We can write similar property for p(x)-Jacobsthal Lucas

polynomials as the following



Cp,n+1(x)

Cp,n(x)


= Jn

p



p(x)

2


(3.4)

Corollary 17 Let m, n ≥ 0, then

Jp,m+n+1(x) = Jp,n+1(x)Jp,m+1(x)+2Jp,n(x)Jp,m(x) (3.5)

Proof. The proof is made by using the property of

Jm+n
p = Jm

p .J
n
p and equality of matrix.

Corollary 18

Jp,n+m(x) = Jp,n+1(x)Jp,m(x) + 2Jp,n(x)Jp,m−1(x)

Cp,m+n(x) = Cp,n(x)Jp,m−1(x) + 2Jp,m(x)Cp,n+1(x)

Proof. We also can see the truth of the relation by using

the Corollory 17. We want to use another method for

the proof by using (3.3)

Jp,n+1(x)Jp,m(x) + 2Jp,n(x)Jp,m−1(x)

=

[
Jp,m(x) 2Jp,m−1(x)

] 

Jp,n+1(x)

Jp,n(x)



=

[
Jp,m(x) 2Jp,m−1(x)

]
Jn
p



1

0



=

[
1 0

]
Jm+n−1
p



1

0


= Jp,m+n(x)

and

Jp,m(x)Cp,n+1(x) + 2Cp,n(x)Jp,m−1(x)

=

[
Jp,m(x) 2Jp,m−1(x

] 

Cp,n+1(x)

Cp,n(x)



=

[
Jp,m(x) 2Jp,m−1(x

]
Jn
p



p(x)

2



=

[
1 0

]
Jm+n−1
p



p(x)

2


= Cp,m+n(x)

Corollary 19 Let n ≥ 0, then

Jp,n+1(x)Jp,n−1(x) − J2
p,n(x) = −(−2)n−1

Proof. det(Jp) = −2 . Then det(Jn
p ) = (−2)n =

2(Jp,n+1(x)Jp,n−1(x) − J2
p,n(x)).
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Theorem 20 The inverse of Jn
p

J−np =


Jp,n+1(x) 2Jp,n(x)

Jp,n(x) 2Jp,n−1(x)


(3.6)

Theorem 21 The eigenvalues of Jn
p are αn(x) and

Bn(x).

Proof.

det(Jn
p − λI )

= det



Jp,n+1 (x) − λ 2Jp,n (x)

Jp,n (x) 2Jp,n−1 (x) − λ


= 0

= λ2 − λ(Jp,n+1 (x) + 2Jp,n−1 (x)) + 2Jp,n+1 (x)Jp,n−1 (x) − 2J2
p,n (x)

= λ2 − λCp,n (x) + (−2)n

The roots are found from the important relationships

in f) and g)

αn(x) =
Cp,n(x) +

√
p2(x) + 8Jp,n(x)
2

βn(x) =
Cp,n(x) −

√
p2(x) + 8Jp,n(x)
2

Corollary 22 We offer two relationships that can be de-
scribed as being of the Moivre type by using the important
relationships f) , g)
[√

p2 (x) + 8Jp,n (x) +Cp,n (x)
]r
= 2rαnr

= 2r−1
[√

p2 (x) + 8Jp,nr (x) +Cp,nr (x)
]

[√
p2 (x) + 8Jp,n (x) −Cp,n (x)

]r
= (−2)rβnr

= (−2)r−1
[√

p2 (x) + 8Jp,nr (x) −Cp,nr (x)
]
.

When p(x) = 1 this property reduces to the following

form
[
3Jn + Cn

2

]r
=

3Jnr + Cnr

2
,

[
3Jn − Cn

2

]r
=

Cnr − 3Jnr
2

.
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