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In this paper, we introduce some separation axioms on double topological spaces and some relation between

them.

Keywords: Double T ∗i −spaces (T ∗∗i −spaces), (i = 0,1,2,3).

I. INTRODUCTION

Atanassov [1–4] introduced the concept of intuition-

istic fuzzy sets as a generalization of fuzzy sets. Çoker [6]

generalized topological structures in intuitionistic fuzzy case.

The concept of intuitionistic sets and the topology on intu-

itionistic sets was first given by Çoker [5, 7].

Flou set stems from linguistic considerations of Yves

Gentilhomme [9] about the vocabulary of a natural language.

The mathematical definition of flou sets and binary operations

on it are introduced by E. E. Kerre [12].

In 2005, the suggestion of J. G. Garcia et al. [8] that dou-

ble set (D-set, for short) is a more appropriate name than flou

(intuitionistic) set, and double topology (DT, for short) for the

flou (intuitionistic) topology. Kandil et al. [10, 11] introduced

the concept of D-sets, double point (D-point, for short), dou-

ble topological spaces (DT S, for short) and continuous func-

tions between these spaces.

In this paper, we generalized some of separation axioms on

DT S. Moreover, we give the relationship between them.

∗ slamma_−elarabi@yahoo.com

II. PRELIMINARIES

In this section, we collect some definitions and theo-

rems which will be needed in the sequel. For more details see

[10, 11].

Definition II.1 [11] Let X be a nonempty set.

1. A D-set A is an ordered pair (A1,A2) ∈ P(X)×̂P(X)

such that A1 ⊆ A2.

2. D(X)= {(A1,A2)∈P(X)×̂P(X),A1⊆A2} is the family

of all D-sets on X.

3. Let η1,η2 ⊆ P(X). The product of η1 and η2, de-

noted by η1×̂η2, defined by: η1×̂η2 = {(A1,A2) : A1 ∈

η1,A1 ∈ η2,A1 ⊆ A2}.

4. The D-set X = (X ,X) is called the universal D-set.

5. The D-set /0 = ( /0, /0) is called the empty D-set.

Definition II.2 [11] Let A = (A1,A2),B = (B1,B2) and C =

(C1,C2) ∈ D(X).

1. A = B⇔ A1 = B1,A2 = B2.

2. A⊆ B⇔ A1 ⊆ B1,A2 ⊆ B2.

3. A ∪ B = (A1∪B1,A2∪B2).
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4. A ∩ B = (A1∩B1,A2∩B2).

5. Ac = (Ac
2,A

c
1), where Ac is the complement of A.

6. A\B = (A1 \B2,A2 \B1).

7. A\ (B ∩C) = (A\B)∪(A\C).

8. Let x ∈ X . The D-sets x1 = ({x},{x}) and x 1
2
= ( /0,{x})

are said to be D-point in X . The family of all D-points,

denoted by DP(X) i.e., DP(X)= {xt : x∈X , t ∈{1, 1
2}}.

9. x1∈ A⇔ x ∈ A1 and x 1
2
∈ A⇔ x ∈ A2.

Definition II.3 [10] Two D-sets A and B are said to be a

quasi-coincident, denoted by AqB, if A1∩B2 6= /0 or A2∩B1 6=

/0. A is called a not quasi-coincident with B, denoted by A 6qB,

if A1∩B2 = /0 and A2∩B1 = /0.

Theorem II.1 [10] Let A,B,C ∈D(X) and xt ∈DP(X). Then,

1. xt 6q (A ∩ B)⇔ xt 6q A or xt 6q B.

2. A 6q B,C ⊆ B⇒ A 6q C.

Definition II.4 [11] Consider two ordinary sets X and Y . Let

f be a mapping from X into Y . The image of a D-set A in D(X)

defined by: f (A) = ( f (A1), f (A2)). Also the inverse image of

a D-set B ∈ D(Y ) defined by: f−1(B) = ( f−1(B1), f−1(B2)).

Proposition II.1 [11] Let f : X → Y,A ∈ D(X),B ∈ D(Y ).

Then,

1. f−1(Bc) = ( f−1(B))c.

2. A⊆ f−1( f (A)) and equality holds if f is (one-one).

Definition II.5 [11] Let X be a non-empty set. The family η

of D-sets in X is called a DT on X if it satisfies the following

axioms:

1. /0,X ∈ η ,

2. If A,B ∈ η , then A ∩ B ∈ η ,

3. If {As : s ∈ S} ⊆ η , then ∪s∈SAs ∈ η .

The pair (X ,η) is called a DT S. Each element of η is called

an open D-set in X . The complement of open D-set is called

closed D-set.

If η contains ( /0,X), then the DTS (X ,η) is called stratifiable

double topological space, (STDTS, for short).

Definition II.6 [11] Let (X ,η) be a DT S. A D-set A ∈ X is

called a double neighborhood (D− nbd, for short) of the D-

point xt (t ∈ {1, 1
2}), if there exists Oxt

∈η such that xt∈Oxt
⊆

A. The family of all D−nbds of the D-point xt will be denoted

by N(xt).

Definition II.7 [11] Let (X ,η) be a DT S and A ∈ D(X). The

double closure of A, denoted by clη(A) or A, defined by:

clη(A) = ∩{B : B ∈ ηc and A ⊆ B}.

Definition II.8 [11] Let (X ,η) be a DT S and A ∈ D(X). The

double interior of A, denoted by intη(A) or Ao, defined by:

intη(A) = ∪{B : B ∈ η and B⊆ A}.

Definition II.9 [11] Let A = (A1,A2) ∈ D(X). A is called a

finite D-set if A2 is a finite set.

Definition II.10 [11] Let X be an infinite set. The family

η∞ = { /0}
⋃
{A ⊆ X : Ac is f inite } is called a co-finite DT on

X .

Definition II.11 [11] Let (X ,η) be a DT S and Y be a non-

empty subset of X . ηY = {A
⋂

Y : A ∈ η and Y = (Y,Y )} is

a DT on Y. The DT S (Y,ηY ) is called a double topological

subspace (DT−subspace, for short) of (X ,η).

Definition II.12 [11] Let (X ,η) be a DT S, F ∈ D(X) and Y

be a non-empty subset of X . The D-subset over Y, denoted by

FY , defined by: FY = F
⋂

Y .

Definition II.13 [11] Let f : X → Y be a mapping and let

(X ,η) and (Y,η∗) be DT S. f is called a D-continuous if

f−1(B) ∈ η , whenever B ∈ η∗.

Theorem II.2 [11] Let (X ,η) and (Y,η∗) be two D-

topological spaces and let f : X→Y be a mapping, A ∈D(X)

and B ∈ D(Y ). Then, the following conditions are equivalent:

1. f is a D-continuous,

2. f−1(B) ∈ ηc, ∀B ∈ η∗c,
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3. f (clη(A))⊆ clη∗( f (A)), ∀A ∈ D(X).

Definition II.14 [11] Let (X ,η) and (Y,η∗) be two DT S and

let f : X → Y be a mapping and A ∈ D(X).

1. f is called D-open if f (A) ∈ η∗, ∀A ∈ η .

2. f is called D-closed if f (A) ∈ η∗c, ∀A ∈ ηc.

Theorem II.3 [11] Let (X ,η) and (Y,η∗) be two DT S and let

f : X → Y be a mapping and A ∈ D(X). Then, f is D-closed

iff clη∗( f (A))⊆ f (clη(A)), ∀A ∈ D(X).

III. D-SEPARATION AXIOMS

Definition III.1 A DT S (X ,η) is called:

1. DT0−space if xt 6 q yr ⇒ clη(xt) 6 q yr or clη(yr) 6

q xt , ∀xt ,yr ∈ DP(X). [11]

2. DT1−space if xt 6 q yr ⇒ clη(xt) 6 q yr and clη(yr) 6

q xt , ∀xt ,yr ∈ DP(X). [11]

3. DT2−space if xt 6 q yr ⇒ ∃Oxt
,Oyr

∈ η such that Oxt
6

q Oyr
, ∀xt ,yr ∈ DP(X). [11]

4. DR2−space if xt 6 q F ,F ∈ ηc ⇒ ∃Oxt
,OF ∈

η such that Oxt
6q OF , ∀xt ∈ DP(X). [11]

5. DT3−space if it is DR2 and DT1−spaces. [11]

6. DT ∗0 −space if ∀xt ,yr ∈DP(X),x 6= y we have: xt 6q yr⇒

clη(xt) 6q yr or clη(yr) 6q xt .

7. DT ∗∗0 −space if ∀xt ,yr ∈ DP(X),x = y we have: xt 6

q yr⇒ clη(xt) 6q yr or clη(yr) 6q xt .

8. DT ∗1 −space if ∀xt ,yr ∈DP(X),x 6= y we have: xt 6q yr⇒

clη(xt) 6q yr and clη(yr) 6q

xt .

9. DT ∗∗1 −space if ∀xt ,yr ∈ DP(X),x = y we have: xt 6

q yr⇒ clη(xt) 6q yr and clη(yr) 6q

xt .

10. DT ∗2 −space if ∀xt ,yr ∈ DP(X),x 6= y and xt 6q yr there

exist Oxt
,Oyr

∈ η such that Oxt

6q Oyr
.

11. DT ∗∗2 −space if ∀xt ,yr ∈ DP(X),x = y and xt 6q yr there

exist Oxt
,Oyr

∈ η such that Oxt

6q Oyr
.

12. DT ∗3 −space if it is DR2 and DT ∗1 −spaces.

13. DT ∗∗3 −space if it is DR2 and DT ∗∗1 −spaces.

Theorem III.1 Let (X ,η) be a DT S. Then, (X ,η) is

DT1−space (DT ∗1 −space) iff xt 6q

yr,x 6= y, implies ∃ Oxt
such that yr 6q Oxt

and ∃ Oyr
such that

xt 6q Oyr
.

Proof. Suppose that (X ,η) is a DT1 (DT ∗1 ) and let xt 6q yr.

Then, xt 6q clη(yr). Therefore, xt∈(clη(yr))
c 6q yr [by theorem

II.1]. Similarly, yr∈(clη(xt))
c,(clη(xt))

c 6q xt . Hence, the the-

orem holds.

Theorem III.2 Let (X ,η) be a DT S. Then, (X ,η) is a

DT0−space→ (X ,η) is a DT ∗0 .

Proof. It is obvious.

The following Example shows that the converse of Theo-

rem III.2 is not true in general.

Example III.1 Let X = {a,b,c} and η =

{ /0,X ,({a},{a}),({b},{b}),({a,b},{a,b})}.

Then, (X ,η) ∈ DT ∗0 −space. But it is not

DT0−space, for ( /0,{a}) 6 q( /0,{a}), but clη( /0,{a}) =

({a,c},{a,c}) q ( /0,{a}).

Theorem III.3 Let (X ,η) be a DT S. Then, (X ,η) is a

DT1−space→ (X ,η) is a DT ∗1 .

Proof. It is obvious.

The following Example shows that the converse of Theo-

rem III.3 is not true in general.

Example III.2 Let X = {a,b} and η =

{ /0,X ,({a},{a}),({a},X),( /0,{b}),({b},{b})}.

Then, (X ,η) ∈ DT ∗1 −space. But it is not DT1−space, for

( /0,{a}) 6q( /0,{a}), but clη( /0,{a}) = ({a},{a}) q ( /0,{a}).
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Theorem III.4 Let (X ,η) be a DT S. Then, (X ,η) is a

DT2−space→ (X ,η) is a DT ∗2 .

Proof. It is obvious.

The following Example shows that the converse of Theo-

rem III.4 is not true in general.

Example III.3 Let X = {a,b} and η =

{ /0,X ,({a},{a}),({b},{b})}. Then,

(X ,η) ∈ DT ∗2 −space. But it is not DT2−space, for

( /0,{a}) 6q( /0,{a}), but ∀ Oa 1
2

,Oa 1
2

q

Oa 1
2

,a 1
2
= ( /0,{a}).

Theorem III.5 Let (X ,η) be a DT S. Then, (X ,η) is a

DT3−space→ (X ,η) is a DT ∗3 .

Proof. It is obvious.

The following Example shows that the converse of Theo-

rem III.5 is not true in general.

Example III.4 From Example III.3, we have (X ,η) ∈

DT ∗3 −space. But it is not DT3−space, for ( /0,{a}) 6q( /0,{a}),

but ({a},{a}) = clη( /0,{a}) q ( /0,{a}).

Theorem III.6 Let (X ,η) be a DT S. Then, (X ,η) is a

DT ∗1 −space→ (X ,η) is a DT ∗o .

Proof. It is obvious.

Example III.5 From Example III.1, we have (X ,η) ∈

DT ∗0 −space. But it is not DT ∗1 −space, for ({a},{a}) 6

q({c},{c}), but ({a,c},{a,c}) = clη({a},{a}) q ({c},{c}).

Theorem III.7 Let (X ,η) be a DT S. Then, (X ,η) is a

DT ∗2 −space→ (X ,η) is a DT ∗1 .

Proof. It follows from Theorem III.1.

Example III.6 Let N be the set of all natural numbers.

Then, the family ηN = { /0}
⋃
{A ⊆ N : Ac is f inite }, (N,η) ∈

DT ∗1 −space. But it is not DT ∗2 , for if there exist nt 6q sr, then all

open D-sets contain nt quasi coincident with all open D-sets

contain sr.

Theorem III.8 Let (X ,η) be a DT S. Then, (X ,η) is a

DT ∗3 −space→ (X ,η) is a DT ∗2 .

Proof. Suppose that (X ,η) is a DT ∗3 −space and let xt 6

q yr,x 6= y. Then, xt 6 q clη(yr). It follows that, ∃Oclη (yr)
∈

N(clη(yr)),Oxt
∈ N(xt) such that Oclη (yr)

6q Oxt
. This implies

that, Oyr
6q Oxt

[by theorem II.1]. Hence, (X ,η) is a DT ∗2 .

Remark III.1 1. From Example III.6, (X ,η) is a

DT1−space, but it is not DT ∗2 and from Example III.2,

(X ,η) is a DT ∗2 −space, but it is not DT1.

2. From Example III.3, (X ,η) is a DT ∗3 −space, but it is

not DT2.

Remark III.2 Let (X ,η) be a DT S. Then,

1. DT ∗i is DTi, (i = 0,1,3) iff ∀x ∈ X ,x 1
2
6q clη(x 1

2
)

2. DT ∗2 is DT2 iff ∀x ∈ X , ∃ Ox 1
2

6q Ox 1
2

.

Remark III.3 Theorems III.1, III.2, III.3, III.4, III.5, III.6,

III.7, III.8 are satisfied if we replace DT ∗i by DT ∗∗i , (i =

0,1,2,3).

Corollary III.1 For a DT S (X ,η) we have the following im-

plication:

DT ∗3 → DT ∗2 → DT ∗1 → DT ∗0 .

↑ ↑ ↑ ↑

DT3→ DT2 → DT1→ DT0.

↓ ↓ ↓ ↓

DT ∗∗3 → DT ∗∗2 → DT ∗∗1 → DT ∗∗0 .

IV. D-SUBSPACES

Theorem IV.1 Let (Y,ηY ) be a DT−subspace of a D-space

(X ,η) and let F ∈ D(Y ). Then,

1. If F is an open D-set in Y and Y ∈ η , then F ∈ η .

2. F is a closed D-set in Y iff F =Y ∩H for some H ∈ ηc.

Proof.

1. Let F ∈ ηY . Then, ∃G ∈ η such that F = Y ∩ G.

Now, if Y ∈ η . Then Y ∩ G ∈ η . Hence, F ∈ η .
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2. Let F ∈ ηc
Y . Then, F =Y \G,G∈ ηY and G=Y ∩H for

some H ∈ η . It follows that, F =Y \(Y ∩H) =Y \H =

Y ∩ Hc, where Hc is a closed D-set in X .

Conversely, suppose that F = Y ∩ G for some G ∈ ηc,

then

F = Y ∩ G

= Y ∩(X \H),(G = X \H,H ∈ η)

= Y ∩ Hc

= Y \H

= Y \ (Y ∩ H),Y ∩ H ∈ ηY .

Therefore, F ∈ ηc
Y . Hence, the result.

Theorem IV.2 Let (Y,ηY ) be a DT−subspace of a

DT S (X ,η) and let NY ∈ D(Y ). Then, if NY = Y ∩ N

for some N ∈ N(yr), then NY ∈ NY (yr).

Proof.

Let NY = Y ∩ N,N ∈ N(yr). Then, ∃ G ∈ η such that

yr∈G ⊆ N, so that yr∈ G ∩ Y ⊆ N ∩ Y = NY . Therefore,

yr∈ GY ⊆ NY ,(GY = G ∩ Y ). Hence, NY ∈ NY (yr).

Theorem IV.3 A DT−subspace (Y,ηY ) of a DT ∗0 −space

(X ,η) is a DT ∗0 .

Proof. Let xt ,yr ∈ DP(Y ),x 6= y such that xt 6 q yr. Then,

xt ,yr ∈ DP(X) and xt 6 q yr. This implies that, xt 6 q clη(yr)

or yr 6 q clη(xt). Thus, (xt∩ Y ) 6 q (clη(yr)∩ Y ) or (yr∩ Y ) 6

q (clη(xt)∩ Y ) [by Theorem IV.1]. Therefore, xt 6 q clηY (yr)

or yr 6q clηY (xt). Hence, (Y,ηY ) is a DT ∗0 −space.

Theorem IV.4 A DT−subspace (Y,ηY ) of a DT ∗1 −space

(X ,η) is a DT ∗1 .

Proof. Let xt ,yr ∈ DP(Y ),x 6= y such that xt 6 q yr. Then,

xt ,yr ∈ DP(X) and xt 6q yr

implies xt 6 q clη(yr) and yr 6 q clη(xt). Thus (xt∩ Y ) 6

q (clη(yr) ∩ Y ) and (yr ∩ Y ) 6q (clη(xt)∩

Y ) [by Theorem IV.1]. Therefore, xt 6 q clηY (yr) and yr 6

q clηY (xt). Hence, (Y,ηY ) is a DT ∗1 −space.

Theorem IV.5 A DT−subspace (Y,ηY ) of a DT ∗2 −space

(X ,η) is a DT ∗2 .

Proof. Let xt ,yr ∈ DP(Y ),x 6= y such that xt 6 q yr. Then,

∃Oxt
,Oyr

∈ η such that Oxt
6q

Oyr
, implies Oxt

∩ Y ,Oyr
∩ Y ∈ ηY [by Theorem IV.2] such

that Oxt
∩ Y 6q Oyr

∩ Y . Hence, (Y,ηY ) is a DT ∗2 −space.

Theorem IV.6 A DT−subspace (Y,ηY ) of a DT ∗3 −space

(X ,η) is a DT ∗3 .

Proof. Since (X ,η) is a DT ∗3 −space, then it is DR2 and

DT ∗1 −spaces.

Let yr ∈ DP(Y ) and yr 6 q F ∩ Y ,F ∈ ηc. Then, yr 6 q F [by

theorem II.1] implies ∃Oyr
,OF ∈ η such that Oyr

6 q OF . It

follows that OY
yr
= Oyr

∩ Y 6 q OF ∩ Y = OY
F ,(O

Y
yr
,OY

F ∈ ηY )

[by Theorem IV.2]. Therefore, (Y,ηY ) is a DR2. But (Y,ηY )

is a DT ∗1 −space [by theorem IV.4]. Hence, (Y,ηY ) is a

DT ∗3 −space.

Theorem IV.7 A D-subspace (Y,ηY ) of a DT ∗∗i −space

(X ,η) is a DT ∗∗i −space, i=(0, 1, 2, 3).

Proof. It is obvious.

V. SOME PROPERTIES OF D-CONTINUOUS FUNCTION

Definition V.1 Let (X ,η) and (Y,η∗) be two DT S and let f :

X → Y be a mapping. Then, f is called a D-homeomorphism

if it is a one-one, D-continuous and D-closed of X onto Y.

Lemma V.1 Let (X ,η) and (Y,η∗) be two DT S and let f :

X → Y be a (one-one) and onto mapping. Then,

1. If yr ∈ DP(Y ), then, ∃ x ∈ X such that xt ∈ DP(X) and

f (xt) = yr.

2. If yr ∈ DP(Y ), then f−1(yr) ∈ DP(X).

3. If y1t
,y2r
∈ DP(Y ), y1t

6 q y2r
,y1 6= y2 then ∃ x1,x2 ∈

X ,x1 6= x2 such that f (xi) = yi,(i = 1,2) and f (x1t
) =

y1t
, f (x2r

) = y2r
. Also, x1t

6q x2r
.

Proof.

(1) and (2) are obvious.

(3) It is clear from (2) that f (x1t
) = y1t

, f (x2r
) = y2r

.

Now, if y1 6= y2, then f (x1) 6= f (x2). Implies that, x1 6= x2.

Since, y1t
6q y2r

, then y1t
⊆ (y2r

)c, so f−1(y1t
) ⊆ f−1(y2r

)c =

( f−1(y2r
))c [by Proposition II.1]. Thus, x1t

⊆ (x2r
)c. There-

fore, x1t
6q x2r

,x1 6= x2.
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Proposition V.1 Let (X ,η) and (Y,η∗) be two DTS and let

f : X→Y be a (one-one) and onto mapping, A ∈D(X). Then,

( f (A))c = f ((A)c).

Proof. Suppose that f is (one-one) and onto map-

ping, then A = f−1( f (A)) [by Proposition II.1], implies that

(A)c = ( f−1( f (A)))c = f−1( f (A))c) [by Proposition II.1], so

that f ((A)c) = f ( f−1( f (A))c) = ( f (A))c. Hence, ( f (A))c =

f ((A)c).

Theorem V.1 The property of being a DT ∗0 −space is a topo-

logical property.

Proof. Suppose f : (X ,η)→ (Y,η∗) is a D-homeomorphism.

Let y1t
,y2r
∈ DP(Y ),y1t

6 q y2r
,y1 6= y2. Then, by lemma

V.1 ∃ x1,x2 ∈ X ,x1 6= x2 such that f (xi) = yi,(i = 1,2)

and f (x1t
) = y1t

, f (x2r
) = y2r

. Also, x1t
6 q x2r

, and

(X ,η) is a DT ∗0 −space, then clη(x1t
) 6 q x2r

or x1t
6

q clη(x2r
). Implies that, x1t

⊆ (clη(x2r
))c. So that f (x1t

) ⊆

f ((clη(x2r
))c) = ( f ((clη(x2r

)))c [by Proposition V.1]. Thus

y1t
∈(clη∗( f (x2r

)))c, f is D-homeomorphism. It follows that,

y1t
6q clη∗(y2r

). Similarly, we also have y2r
6q clη∗(y1t

). Hence,

(Y,η∗) is a DT ∗0 .

Theorem V.2 The property of being a DT ∗1 −space is a

topological property.

Proof. Suppose f : (X ,η)→ (Y,η∗) is a D-homeomorphism.

Let y1t
,y2r
∈ DP(Y ),y1t

6 q y2r
,y1 6= y2. Then, by lemma

V.1 ∃ x1,x2 ∈ X ,x1 6= x2 such that f (xi) = yi,(i = 1,2)

and f (x1t
) = y1t

, f (x2r
) = y2r

. Also, x1t
6 q x2r

, (X ,η) is

a DT ∗1 −space, then clη(x1t
) 6 q x2r

and x1t
6 q clη(x2r

),

implies that x1t
⊆ (clη(x2r

))c, so that f (x1t
) ⊆

f ((clη(x2r
))c) = ( f ((clη(x2r

)))c [by Proposition V.1],

thus y1t
∈(clη∗( f (x2r

)))c, f is D-homeomorphism. It follows

that, y1t
6 q clη∗(y2r

). Similarly, we also have y2r
6 q clη∗(y1t

).

Hence, (Y,η∗) is a DT ∗1 .

Theorem V.3 The property of being a DT ∗2 −space is a topo-

logical property.

Proof. Suppose f : (X ,η)→ (Y,η∗) is a D-homeomorphism.

Let y1t
,y2r
∈ DP(Y ),y1t

6 q y2r
,y1 6= y2. Then, by lemma V.1

∃ x1,x2 ∈ X ,x1 6= x2 such that f (xi) = yi,(i = 1,2) and

f (x1t
) = y1t

, f (x2r
) = y2r

. As, x1t
6 q x2r

and (X ,η) is a

DT ∗2 −space, ∃ F ,G ∈ η such that x1t
∈ F ,x2r

∈ G and F 6

q G, implies that f (x1t
)∈ f (F), f (x2r

)∈ f (G) and f (F) 6q f (G)

[by Proposition V.1] so that y1t
∈ f (F),y2r

∈ f (G) and f (F) 6

q f (G), [ f (F), f (G) ∈ η∗]. Hence, (Y,η∗) is a DT ∗2 .

Theorem V.4 The property of being a DT ∗3 −space is a topo-

logical property.

Proof. Suppose f : (X ,η)→ (Y,η∗) is a D-homeomorphism

and (X ,η) is a DT ∗3 −space, then (X ,η) is DT ∗1 and

DR2−spaces, implies (Y,η∗) is DT ∗1 and DR2−spaces [by

theorem V.2], [11]. Hence, (Y,η∗) is a DT ∗3 .

Theorem V.5 The property of being a DT ∗∗i −space, (i=0, 1,

2, 3) is a topological property.

Proof. Straightforward.
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