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We consider the two quantum measurement theories for measuring a single Pauli observable. We assume also

the existence of a classical probability space for the two measurement theories. We cannot avoid the Kochen-

Specker (KS) contradiction when we measure the Pauli observable by using the projective measurement theory

if we introduce a classical probability space. The results of measurement are either +1 or−1 (in h̄/2 unit) when

we consider a spin-1/2 system. The projective measurement theory does not accept a classical probability space

when we measure the Pauli observable. We propose a new measurement theory based on the truth values, i.e.,

the truth T (1) for true and the falsity F (0) for false. The results of measurement are either +1 or 0 (in h̄/2 unit).

We avoid the KS contradiction when we measure the Pauli observable by using the new measurement theory if

we introduce a classical probability space. The new measurement theory accepts a classical probability space

when we measure the Pauli observable.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.65.Ca
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I. INTRODUCTION

The quantum theory (cf. [1–6]) gives accurate and at times

remarkably accurate numerical predictions. Much experimen-

tal data fits to the quantum predictions for long time.

On the other hand, from the incompleteness argument of

Einstein, Podolsky, and Rosen (EPR) [7], a hidden-variable

interpretation of the quantum theory has been an attractive

topic of research [3, 4]. One is the Bell-EPR theorem [8]. This

theorem says that the quantum predictions violate the inequal-

ity following from the EPR-locality condition. The condition

tells that a result of measurement pertaining to one system is

independent of any measurement performed simultaneously

at a distance on another system.

The other is the no-hidden-variables theorem of Kochen

and Specker (the KS theorem) [9]. The original KS theo-

rem says the non-existence of a real-valued function which is

multiplicative and linear on commuting operators. The quan-

tum theory does not accept the KS type of hidden-variable

theory. The proof of the original KS theorem relies on intri-

cate geometric argument. Greenberger, Horne, and Zeilinger

discover [10, 11] the so-called GHZ theorem for four-partite

GHZ state. And, the KS theorem becomes very simple form

(see also Refs. [12–18]). Especially, the KS theorem can be
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derived by only two results of measurement [17, 18].

Mermin considers the Bell-EPR theorem in a multipar-

tite state. He derives multipartite Bell inequality [19]. The

quantum predictions by n-partite GHZ state violate the Bell-

Mermin inequality by an amount that grows exponentially

with n. And, several multipartite Bell inequalities are reported

[20–28]. They also say that the quantum predictions violate

local hidden-variable theories by an amount that grows expo-

nentially with n.

It is begun to research the validity of the KS theorem by

using inequalities (see Refs. [29–32]). To find such inequali-

ties to test the validity of the KS theorem is particularly useful

for experimental investigation [33]. One of authors derives an

inequality [32] as tests for the validity of the KS theorem. The

quantum predictions violate the inequality when the system is

in an uncorrelated state. An uncorrelated state is defined in

Ref. [34]. The quantum predictions by n-partite uncorrelated

state violate the inequality by an amount that grows exponen-

tially with n.

Leggett-type nonlocal hidden-variable theory [35] is exper-

imentally investigated [36–38]. The experiments report that

the quantum theory does not accept Leggett-type nonlocal

hidden-variable theory. These experiments are done in four-

dimensional space (two parties) in order to study nonlocality

of hidden-variable theories. However there are debates for the

conclusions of the experiments. See Refs. [39–41].

Meanwhile, as for application of the quantum theory, im-

plementation of a quantum algorithm to solve Deutsch’s prob-

lem [42–44] on a nuclear magnetic resonance quantum com-

puter is reported firstly [45]. An implementation of the

Deutsch-Jozsa algorithm on an ion-trap quantum computer is

also reported [46]. There are several attempts to use single-

photon two-qubit states for quantum computing. Oliveira

et al. implements Deutsch’s algorithm with polarization

and transverse spatial modes of the electromagnetic field as

qubits [47]. Single-photon Bell states are prepared and mea-

sured [48]. Also the decoherence-free implementation of

Deutsch’s algorithm is reported by using such single-photon

and by using two logical qubits [49]. More recently, a one-

way based experimental implementation of Deutsch’s algo-

rithm is reported [50].

In 1993, the Bernstein-Vazirani algorithm was reported

[51, 52]. It can be considered as an extended Deutsch-Jozsa

algorithm. In 1994, Simon’s algorithm was reported [53]. Im-

plementation of a quantum algorithm to solve the Bernstein-

Vazirani parity problem without entanglement on an ensemble

quantum computer is reported [54]. Fiber-optics implementa-

tion of the Deutsch-Jozsa and Bernstein-Vazirani quantum al-

gorithms with three qubits is discussed [55]. Quantum learn-

ing robust against noise is studied [56]. A quantum algorithm

for approximating the influences of Boolean functions and

its applications is recently reported [57]. Quantum compu-

tation with coherent spin states and the close Hadamard prob-

lem is also discussed [58]. Transport implementation of the

Bernstein-Vazirani algorithm with ion qubits is more recently

reported [59]. Quantum Gauss-Jordan elimination and simu-

lation of accounting principles on quantum computers are dis-

cussed [60]. Finally, we mention that the dynamical analysis

of Grover’s search algorithm in arbitrarily high-dimensional

search spaces is studied [61].

On the other hand, the earliest quantum algorithm, the

Deutsch-Jozsa algorithm, is representative to show that quan-

tum computation is faster than classical counterpart with

a magnitude that grows exponentially with the number of

qubits. In 2015, it was discussed that the Deutsch-Jozsa al-

gorithm can be used for quantum key distribution [62]. In

2017, it was discussed that secure quantum key distribution

based on Deutsch’s algorithm using an entangled state [63].

Subsequently, a highly speedy secure quantum cryptography

based on the Deutsch-Jozsa algorithm is proposed [64].

Recently, we discover [65] a new measurement theory

based on the truth values. The results of measurement are ei-

ther +1 or 0 (in h̄/2 unit). We consider the significance of the

new measurement theory based on the truth values [66, 67].

Especially, we investigate the relation between the new mea-

surement theory and the KS theorem.

We assume an implementation of the double-slit experi-

ment [68]. There is a detector just after each slit. Thus inter-
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ference figure does not appear, and we do not consider such a

pattern. This is an easy detector model to a Pauli observable.

In this paper, we consider the two quantum measurement

theories for measuring a single Pauli observable. We assume

also the existence of a classical probability space for the two

measurement theories. We cannot avoid the Kochen-Specker

(KS) contradiction when we measure the Pauli observable by

using the projective measurement theory if we introduce a

classical probability space. The results of measurement are

either +1 or −1 (in h̄/2 unit) when we consider a spin-1/2

system. The projective measurement theory does not accept

a classical probability space when we measure the Pauli ob-

servable. We propose a new measurement theory based on the

truth values, i.e., the truth T (1) for true and the falsity F (0) for

false. The results of measurement are either +1 or 0 (in h̄/2

unit). We avoid the KS contradiction when we measure the

Pauli observable by using the new measurement theory if we

introduce a classical probability space. The new measurement

theory accepts a classical probability space when we measure

the Pauli observable.

II. PROJECTIVE MEASUREMENT THEORY

In this section, we discuss the relation between the projec-

tive measurement theory and the KS theorem. The results of

measurement are either −1 or +1 (in h̄/2 unit). We measure

σx that is a single Pauli observable. Then, we cannot avoid

the KS contradiction when we introduce a classical probabil-

ity space into the projective measurement theory. Especially,

we systematically describe our assertion based on more math-

ematical analysis using raw data in a thoughtful experiment.

A. Projective measurement theory cannot avoid the KS

contradiction

We assume an implementation of the double-slit experi-

ment. There is a detector just after each slit. Thus interfer-

ence figure does not appear, and we do not consider such a

pattern. The possible values of the results of measurement are

either +1 or−1 (in h̄/2 unit). If a particle passes one side slit,

then the value of the result of measurement is +1. If a particle

passes another slit, then the value of the result of measure-

ment is −1. This is an easy detector model of a single Pauli

observable.

1. A wave function analysis

Let σx be a single Pauli observable. We assume that a

source of a spin-carrying particle emits themselves in a state

ρ . We consider a quantum expected value Tr[ρσx]. If we con-

sider only a wave function analysis, the possible values of the

square of the quantum expected value are

0≤ (Tr[ρσx])
2 ≤ 1. (1)

We define ‖EQM‖2 as

‖EQM‖2 = (Tr[ρσx])
2. (2)

Then we have

‖EQM‖2
min = 0 and ‖EQM‖2

max = 1. (3)

‖EQM‖2
max and ‖EQM‖2

min are the maximal and minimal possi-

ble values of the product, respectively. We get ‖EQM‖2
min = 0

or ‖EQM‖2
max = 1 if the system is a pure state lying in either

the z-axis or the x-axis, respectively.

2. Projective measurement theory says the KS theorem

A mean value E satisfies the projective measurement theory

if it can be written as

E =
∑

m
l=1 rl(σx)

m
, (4)

where l denotes a notation of the lth measurement and r is the

result of the projective measurement of the Pauli observable

σx. We assume the values of r are either −1 or +1 (in h̄/2

unit). Assume the quantum mean value with the system in a

state admits the projective measurement theory. One has the

following proposition concerning the projective measurement

theory

Tr[ρσx](m) =
∑

m
l=1 rl(σx)

m
. (5)
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We can assume the following by Strong Law of Large Num-

bers,

Tr[ρσx](+∞) = Tr[ρσx]. (6)

We define ‖EQM‖2(m) as

‖EQM‖2(m) = (Tr[ρσx](m))2. (7)

We can assume the following by Strong Law of Large Num-

bers,

‖EQM‖2(+∞) = ‖EQM‖2 = (Tr[ρσx])
2. (8)

In what follows, we show that we cannot accept the relation

(5) concerning the projective measurement theory. Assume

the proposition (5) is true. By changing the notation l into l′,

we have same quantum mean value as follows

Tr[ρσx](m) =
∑

m
l′=1 rl′(σx)

m
. (9)

We assume Sum rule and Product rule commute with each

other [18]. We have the following when the system is in a pure

state lying in the x-axis,

‖EQM‖2(m)

=
∑

m
l=1 rl(σx)

m
× ∑

m
l′=1 rl′(σx)

m

≤ ∑
m
l=1
m
· ∑

m
l′=1
m
|rl(σx)rl′(σx)|

=
∑

m
l=1
m
× ∑

m
l′=1
m

= 1. (10)

Clearly, the above inequality can have the upper limit since

the following case is possible:

‖{l|l ∈ N∧ rl(σx) = 1}‖= ‖{l′|l′ ∈ N∧ rl′(σx) = 1}‖,

(11)

and

‖{l|l ∈ N∧ rl(σx) =−1}‖= ‖{l′|l′ ∈ N∧ rl′(σx) =−1}‖.

(12)

And we have the following when the system is in a pure

state lying in the z-axis,

‖EQM‖2(m)

=
∑

m
l=1 rl(σx)

m
× ∑

m
l′=1 rl′(σx)

m

≥ ∑
m
l=1
m
· ∑

m
l′=1
m

(−1)

= (−1)
(

∑
m
l=1
m
× ∑

m
l′=1
m

)
=−1. (13)

Clearly, the above inequality can have the lower limit since

the following case is possible:

‖{l|l ∈ N∧ rl(σx) = 1}‖= ‖{l′|l′ ∈ N∧ rl′(σx) =−1}‖,

(14)

and

‖{l|l ∈ N∧ rl(σx) =−1}‖= ‖{l′|l′ ∈ N∧ rl′(σx) = 1}‖.

(15)

Thus we derive a proposition concerning the quantum mean

value under the assumption that the projective measurement

theory is used (in a spin-1/2 system), that is

−1≤ ‖EQM‖2(m)≤ 1. (16)

From Strong Law of Large Numbers, we have

−1≤ ‖EQM‖2 ≤ 1. (17)

Hence we derive the following proposition concerning the

projective measurement theory

‖EQM‖2
min =−1 and ‖EQM‖2

max = 1. (18)

3. The KS contradiction

We cannot accept the two relations (3) (concerning a wave

function analysis) and (18) (concerning the projective mea-

surement theory), simultaneously. Thus, we are in the KS

contradiction.

III. MEASUREMENT THEORY BASED ON THE TRUTH

VALUES

In this section, we propose a new measurement theory, in

qubits handling, based on the truth values, i.e., the truth T (1)
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for true and the falsity F (0) for false. The results of measure-

ment are either +1 or 0 (in h̄/2 unit).

We discuss the relation between the new measurement the-

ory and the KS theorem. The results of measurement are ei-

ther +1 or 0 (in h̄/2 unit). We measure σx that is a single Pauli

observable. Then, surprisingly, we can avoid the KS contra-

diction when we introduce a classical probability space into

the new measurement theory. Especially, we systematically

describe our assertion based on more mathematical analysis

using raw data in a thoughtful experiment.

A. The new measurement theory can avoid the KS

contradiction

We assume an implementation of the double-slit experi-

ment. There is a detector just after each slit. Thus interference

figure does not appear, and we do not consider such a pattern.

The possible values of the result of measurement are either +1

or 0 (in h̄/2 unit). If a particle passes one side slit, then the

value of the result of measurement is +1. If a particle passes

another slit, then the value of the result of measurement is 0.

This is an easy detector model of a single Pauli observable.

1. A wave function analysis

Let σx be a single Pauli observable. We assume that a

source of a spin-carrying particle emits themselves in a state

ρ . We consider a quantum expected value Tr[ρσx]. If we con-

sider only a wave function analysis, the possible values of the

square of the quantum expected value are

0≤ (Tr[ρσx])
2 ≤ 1. (19)

We define ‖EQM‖2 as

‖EQM‖2 = (Tr[ρσx])
2. (20)

Then we have

‖EQM‖2
min = 0 and ‖EQM‖2

max = 1. (21)

‖EQM‖2
max and ‖EQM‖2

min are the maximal and minimal possi-

ble values of the product, respectively. We get ‖EQM‖2
min = 0

or ‖EQM‖2
max = 1 if the system is a pure state lying in either

the z-axis or the x-axis, respectively.

2. The new measurement theory does not say the KS theorem

A mean value E satisfies the new measurement theory if it

can be written as

E =
∑

m
l=1 rl(σx)

m
, (22)

where l denotes a notation of the lth measurement and r is

the result of the new measurement of the Pauli observable σx.

We assume the values of r are either +1 or 0 (in h̄/2 unit).

Assume the quantum mean value with the system in a state

admits the new measurement theory. One has the following

proposition concerning the new measurement theory

Tr[ρσx](m) =
∑

m
l=1 rl(σx)

m
. (23)

We can assume the following by Strong Law of Large Num-

bers,

Tr[ρσx](+∞) = Tr[ρσx]. (24)

We define ‖EQM‖2(m) as

‖EQM‖2(m) = (Tr[ρσx](m))2. (25)

We can assume the following by Strong Law of Large Num-

bers,

‖EQM‖2(+∞) = ‖EQM‖2 = (Tr[ρσx])
2. (26)

In what follows, we show that we can accept the relation (23)

concerning the new measurement theory. Assume the propo-

sition (23) is true. By changing the notation l into l′, we have

same quantum mean value as follows

Tr[ρσx](m) =
∑

m
l′=1 rl′(σx)

m
. (27)

We assume Sum rule and Product rule commute with each

other [18]. We have the following when the system is in a pure

state lying in the x-axis,

‖EQM‖2(m)

=
∑

m
l=1 rl(σx)

m
× ∑

m
l′=1 rl′(σx)

m

≤ ∑
m
l=1
m
· ∑

m
l′=1
m
|rl(σx)rl′(σx)|

=
∑

m
l=1
m
× ∑

m
l′=1
m

= 1. (28)
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Clearly, the above inequality can have the upper limit since

the following case is possible:

‖{l|l ∈ N∧ rl(σx) = 1}‖= ‖{l′|l′ ∈ N∧ rl′(σx) = 1}‖,

(29)

and

‖{l|l ∈ N∧ rl(σx) = 0}‖= ‖{l′|l′ ∈ N∧ rl′(σx) = 0}‖.

(30)

And we have the following when the system is in a pure

state lying in the z-axis,

‖EQM‖2(m)

=
∑

m
l=1 rl(σx)

m
× ∑

m
l′=1 rl′(σx)

m

≥ ∑
m
l=1
m
· ∑

m
l′=1
m

(0)

= (0)
(

∑
m
l=1
m
× ∑

m
l′=1
m

)
= 0. (31)

Clearly, the above inequality can have the lower limit since

the following case is possible:

‖{l|l ∈ N∧ rl(σx) = 1}‖= ‖{l′|l′ ∈ N∧ rl′(σx) = 0}‖,

(32)

and

‖{l|l ∈ N∧ rl(σx) = 0}‖= ‖{l′|l′ ∈ N∧ rl′(σx) = 1}‖.

(33)

Thus we derive a proposition concerning the quantum mean

value under the assumption that the new measurement theory

is used (in a spin-1/2 system), that is

0≤ ‖EQM‖2(m)≤ 1. (34)

From Strong Law of Large Numbers, we have

0≤ ‖EQM‖2 ≤ 1. (35)

Hence we derive the following proposition concerning the

new measurement theory

‖EQM‖2
min = 0 and ‖EQM‖2

max = 1. (36)

3. Consistency

We can accept the two relations (21) (concerning a wave

function analysis) and (36) (concerning the new measurement

theory), simultaneously. Thus, we avoid the KS contradiction.

IV. CONCLUSIONS

In conclusion, we have considered the two quantum mea-

surement theories for measuring a single Pauli observable.

We have assumed also the existence of a classical proba-

bility space for the two measurement theories. We cannot

have avoided the Kochen-Specker (KS) contradiction when

we measure the Pauli observable by using the projective mea-

surement theory if we introduce a classical probability space.

The results of measurement have been either +1 or −1 (in

h̄/2 unit) when we consider a spin-1/2 system. The projec-

tive measurement theory does not have accepted a classical

probability space when we measure the Pauli observable. We

have proposed a new measurement theory based on the truth

values, i.e., the truth T (1) for true and the falsity F (0) for

false. The results of measurement have been either +1 or 0

(in h̄/2 unit). We have avoided the KS contradiction when we

measure the Pauli observable by using the new measurement

theory if we introduce a classical probability space. The new

measurement theory has accepted a classical probability space

when we measure the Pauli observable.
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