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The geometry of almost paracontact manifolds is a natural extension in the odd dimensional case of almost

Hermitian geometry. In additional, the paracontact geometry as symplectic geometry has large and comprehen-

sive applications in physics, geometrical optics, classical mechanics, thermodynamics, geometric quantization,

differential geometry and applied mathematics. the Euler-Lagrange differential equations one of the common

ways of solving problems in classical and analytical mechanics. In the study, we consider Euler-Lagrange dif-

ferential equations with almost paracontact metric structure for motion objects. Also, implicit solutions of the

differential equations found in this study will be solved by Maple computation program and a graphic example

will be drawn.
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I. INTRODUCTION

An almost paracontact structure on a differentiable mani-

fold was introduced by Sato [1], which is an analogue of an

almost contact structure and is closely related to almost prod-

uct structure. The normal almost paracontact metric mani-

folds are para-CR. Any para-CR paracontact metric manifold

of constant sectional curvature and of dimension greater than

3 must be para-Sasakian. Almost paracontact metric mani-

folds are the famous examples of almost para-CR manifold-

s. An almost contact manifold is always odd dimensional

but an almost paracontact manifold could be even dimen-

sional as well. Tripathi et al. introduced the concept of ε-

almost paracontact manifolds, and in particular, of ε−para-

Sasakian manifolds [2]. Kr. Srivastava et al. submitted the

concept of (ε)-almost paracontact manifolds. They showed

that some typical identities for curvature tensor and Ricci ten-

sor of (ε)-para Sasakian manifolds are obtained and studied

the properties of ε−S paracontact metric manifold [3]. Girtu

showed that K induces an almost 2−paracontact Riemanni-

an structure on T ∗0 M whose restriction to the guratrix bundle

K = {(x, p) |K(x, p) = 1} is an almost paracontact structure

[4]. Ahmad and Jun defined a semi-symmetric non-metric

connection in an almost r−paracontact Riemannian manifold

and they considered submanifolds of an almost r-paracontact

Riemannian manifold endowed with a semi-symmetric non-

metric connection [5]. Erken is to investigate 3-dimensional

ξ -projectively flat and ϕ-projectively flat normal almost para-

contact metric manifolds [6]. Kupeli studied 3-dimensional

normal almost paracontact metric manifolds [7]. Kupeli Erken

and Murathan completed a study of three-dimensional para-

contact metric (κ̃, µ̃, ν̃)-manifolds. They focus on some cur-

vature properties by considering the class of paracontact met-

ric (κ,µ,ν)−manifolds under a condition [8]. Welyczko

showed that the curvature and torsion of slant Frenet curves

in 3-dimensional normal almost paracontact metric manifold-

s [9]. Welyczko is shown that the normal almost paracontact

metric manifolds are para-CR [10]. De and Modal are to s-
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tudy ξ -projectively flat and ϕ-projectively flat 3-dimensional

normal almost contact metric manifolds. An illustrative ex-

ample is given [11]. Ahmad et al defined a quarter symmetric

semi-metric connection in an almost r-paracontact Riemanni-

an manifold and considered invariant, non-invariant and anti-

invariant hypersurfaces of an almost r-paracontact Riemanni-

an manifold with that connection [12].

Differential geometry have a lots of different application-

s in the branches of science. These applications, came into

our lives, are used in many areas and the popular science. We

can say that differential geometry provides a good working

area for studying Lagrangians of classical mechanics and field

theory. The dynamic equation for moving bodies is obtained

for Lagrangian mechanic. Kasap and Tekkoyun obtained La-

grangian and Hamiltonian formalism for mechanical system-

s using para/pseudo-Kähler manifolds, representing an inter-

esting multidisciplinary field of research [13]. Kasap intro-

duced that the Weyl-Euler–Lagrange and Weyl-Hamilton e-

quations on R2n
n which is a model of tangent manifolds of con-

stant W-sectional curvature [14]. Tekkoyun found paracom-

plex analogue of Euler-Lagrange and Hamiltonian equations

[15]. Tekkoyun and Celik present a new analogue of Euler–

Lagrange and Hamilton equations on an almost Kähler model

of a Finsler manifold [16].

II. PRELIMINARIES

Definition 1. Let M be a differentiable manifold of dimen-

sion (2n+1), and suppose J is a differentiable vector bundle

isomorphism J : T M→ T M such that Jx : TxM→ TxM is a (al-

most) complex structure for TxM, i.e. J2 = −I where I is the

identity (unit) operator on V . Then J is called an almost com-

plex structure for the differentiable manifold M. A manifold

with a fixed (almost) complex structure is called an (almost)

complex manifold. Where J2 = J ◦ J, and I is the identity

operator on T M and V is a vector space.

Definition 2. Let M be a differentiable manifold of dimen-

sion (2n+1), and suppose J is a differentiable vector bundle

isomorphism J : T M → T M such that Jx : TxM → TxM is a

(almost) complex structure for TxM, i.e. J2 = I where I is

the identity (unit) operator on V . Then J is called an almost

paracomplex structure for the differentiable manifold M. A

manifold with a fixed almost paracomplex structure is called

an (almost) paracomplex manifold. Where J2 = J ◦ J, and I

is the identity operator on T M.

Definition 3. Suppose that ξ is a vector field: that

is, a vector-valued function with Cartesian coordinates

(ξ 1, ...,ξ n); and x(t) a parametric curve with Cartesian co-

ordinates (x1(t), ...,xn(t)). Then x(t) is an integral curve of

ξ if it is a solution of the following autonomous system of

ordinary differential equations: dx1
dt = ξ 1(x1, ...,xn), ...,

dxn
dt =

ξ n(x1, ...,xn). Such a system may be written as a single vector

equation

ξ (x(t)) = x′(t) =
∂

∂ t
(x(t)) . (1)

Definition 4. Let M be an almost paracontact manifold and

(ϕ,ξ ,η) its almost paracontact structure (e.g. [17]). This

means that M is an (2n+ 1)-dimensional differentiable man-

ifold and ϕ,ξ ,η are tensor fields on M of type (1,1), (1,0),

(0,1), respectively, such that

1. ϕ2X = X−η (X)ξ ,

2. η (ξ ) = 1, ϕξ = 0, η(ϕX) = 0,

3. η (X) = g(X ,ξ ) ,

4. dη( , ) = g( ,ϕ).

(2)

A pseudo-Riemannian metric g on M satisfying the condition

g(ϕX ,ϕY ) = g(X ,Y )−η (X)η (Y ) is said to be compatible

with the structure (ϕ,ξ ,η). Then, (M,ϕ,ξ ,η ,g) or M a para-

contact metric manifold [18]. �

For such a manifold, we additionally have η(X) = g(X ,ξ ),

and we define the (skew-symmetric) fundamental 2-form Φ

by Φ(X ,Y ) = g(X ,ϕY ), and X ,Y,Z are arbitrary vector fields.

Let M be an almost paracontact manifold with almost para-

contact structure (ϕ,ξ ,η ,g) and consider the product mani-

fold M×R, where R is the real line. A vector field on M×R

can be represented by (X , f (d/dt)), where X is tangent to M,
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f a smooth function on M×R, and t the coordinates of R. For

any two vector fields (X , f (d/dt)) and (Y,h(d/dt)) , it is easy

to verify the following:[(
X , f (

d
dt
)

)
,

(
Y,h(

d
dt

)]
=

(
[X ,Y ] ,(Xh−Y f )

d
dt

)
. (3)

Definition 5. If the induced almost product structure J on

M×R defined by

J
(

X , f (
d
dt
)

)
=

(
ϕX + f ξ ,η (X)

d
dt

)
(4)

is integrable, then we say that the almost paracontact structure

(ϕ,ξ ,η ,g) is normal.

Theorem 1. Any 3-dimensional almost paracontact metric

manifold is a para-CR manifold (proof see [9]).

Theorem 2. A paracontact metric manifold is a para-

CR manifold if and only if (∇X ϕ)Y = g(ϕ∇X ξ ,Y )ξ −

η(Y )ϕ∇X ξ (proof see [9]).

Example 1: Let R3 be the 3-dimensional real number space

with a coordinate system (x,y,z). Define an almost paracon-

tact metric structure (ϕ,ξ ,η ,g) on R3 by assuming

(1) ϕ

(
∂

∂x

)
= cosh(2z) ∂

∂ z ,

(2) ϕ

(
∂

∂y

)
= sinh(2z) ∂

∂ z ,

(3) ϕ

(
∂

∂ z

)
= cosh(2z) ∂

∂x − sinh(2z) ∂

∂y .

(5)

We define

η = sinh(2z)dx+ cosh(2z)dy,

ξ =−sinh(2z) ∂

∂x + cosh(2z) ∂

∂y ,

g =−dx⊗dx+dy⊗dy+dz⊗dz.

(6)

In fact, this structure is flat, tree-dimensional, para-CR and

paracontact metric.

Theorem 3. Every paracontact metric structure is al-

most paracontact metric structure.

Proof: Let’s take a look at (5).

1. ϕ2 ∂

∂x = ϕ ◦ϕ

(
∂

∂x

)
= ϕ

(
cosh(2z) ∂

∂ z

)
= cosh2(2z) ∂

∂x − cosh(2z)sinh(2z) ∂

∂y ,

ϕ2 ∂

∂y = ϕ

(
sinh(2z) ∂

∂ z

)
= sinh(2z)cosh(2z) ∂

∂x − sinh2(2z) ∂

∂y ,

ϕ2 ∂

∂ z = ϕ(cosh(2z) ∂

∂x − sinh(2z) ∂

∂y )

= cosh2(2z) ∂

∂ z − sinh(2z)sinh(2z) ∂

∂ z =
∂

∂ z

2. η(ξ ) = (sinh(2z)dx+ cosh(2z)dy)(
−sinh(2z) ∂

∂x + cosh(2z) ∂

∂y

)
= 1,

3. ϕ (ξ ) = ϕ

(
−sinh(2z) ∂

∂x + cosh(2z) ∂

∂y

)
=−sinh(2z)cosh(2z) ∂

∂ z + cosh(2z)sinh(2z) ∂

∂ z = 0,

4. η(ϕX) = 0,

(a) (sinh(2z)dx+ cosh(2z)dy)
[
ϕ

(
∂

∂x

)]
= (sinh(2z)dx+ cosh(2z)dy)

[
cosh(2z) ∂

∂ z

]
= 0,

(b) (sinh(2z)dx+ cosh(2z)dy)
[
ϕ

(
∂

∂y

)]
= (sinh(2z)dx+ cosh(2z)dy)

[
sinh(2z) ∂

∂ z

]
= 0,

(c) (sinh(2z)dx+ cosh(2z)dy)
[
ϕ

(
∂

∂ z

)]
= (sinh(2z)dx+ cosh(2z)dy)

[
cosh(2z) ∂

∂x − sinh(2z) ∂

∂y

]
= 0,

(7)

Conditions (2) are provided then (5) are holomorphic struc-

tures

III. NIJENHUIS TENSOR

A celebrated theorem of Newlander and Nirenberg [19]

says that an almost (para) complex structure is a (para) com-

plex structure if and only if its Nijenhuis tensor or torsion van-

ishes. An almost paracontact structure (ϕ,ξ ,η) is said to be

normal, if the Nijenhuis tensor NJ of almost paracontact struc-
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ture J is defined as

NJ (X ,Y ) = [J,J] (X ,Y )

= [JX ,JY ]+ J2 [X ,Y ]− J [JX ,Y ]− J [X ,JY ] .
(8)

The almost paracontact structure J on M is integrable if and

only if the tensor NJ vanishes identically, where NJ is defined

on two vector fields X and Y . The tensor (2,1) is called the

Nijenhuis tensor (8). If NJ = 0 then the almost paracontact

structure is called paracontact or integrable.

IV. (EULER)-LAGRANGE DYNAMICS EQUATIONS

A dynamic system with a finite number n degrees of free-

dom can be described by real functions of time qi(t) (i = 1, 2,

..., n) which, together with the derivatives image q̇i, uniquely

determine its state at any moment of time t. The collection of

all values of qi is called the configuration space M of the sys-

tem. In the simplest case, M is a Euclidean space Rn. Let M

be an n-dimensional manifold and T M its tangent bundle with

canonical projection τM : T M→M. T M is called the phase s-

pace of velocities of the base manifold M. Let L : T M→R be

a differentiable function on T M and is called the Lagrangian

function.

Klein (1962) submitted that the closed 2-form on a vector

field and 1−form reduction function on the phase space de-

fined of a mechanical system is equal to the differential of the

energy function 1-form of the Lagrangian mechanical systems

[20, 21].

We consider closed 2-form on T M such that ΦL =−d(dJL)

and iξ is 2-form reduction function that reduces the 1-form.

Consider the equation

iΨΦL = dEL. (9)

Where the semispray Ψ is a vector field. We shall see that for

motion in a potential, EL =V (L)−L is an energy function and

V = ϕ(Ψ) a Liouville vector field. Here dEL denotes the dif-

ferential of E. We shall see that (9) under a certain condition

on Ψ is the intrinsical expression of the Euler-Lagrange equa-

tions of motion. This equation is named as Euler-Lagrange

dynamical equation. The triple (T M,ΦL,Ψ) is known as

Euler-Lagrangian system on the tangent bundle T M. Con-

sider the following combination of the kinetic (T ) and poten-

tial energies (V ), L = T −V. This is called the Lagrangian.

There is a minus sign in the definition (a plus sign would sim-

ply give the total energy). In the problem of a mass on the end

of a spring T = mẋ2/2, V = kx2/2,L = mẋ2/2− kx2/2. Now,

we can be write

∂

∂ t

(
∂L
∂ ẋ

)
− ∂L

∂x = 0, ẋ = ∂x
∂ t . (10)

This equation is called the Euler-Lagrange (E-L) equation

[22, 23].

V. EULER-LAGRANGIAN EQUATIONS

We, using (9),can be obtained Euler-Lagrange equations for

classical and analytical mechanics on almost paracontact met-

ric manifold and its shown that by (T M,Ψ,η ,g).

Proposition: Let (x,y,z) be coordinate functions and let Ψ

be the vector field determined on (T M,Ψ,η ,g) by

Ψ = X ∂

∂x +Y ∂

∂y +Z ∂

∂ z , X =
.
x = y,Y =

.
y = ẍ, .Z =

.
z, (11)

the following partial differential equations are obtained on the

(5) system:

1. − ∂

∂ t

(
cosh(2z) ∂L

∂ z

)
+ ∂L

∂x = 0,

2. − ∂

∂ t

(
sinh(2z) ∂L

∂ z

)
+ ∂L

∂y = 0,

3. − ∂

∂ t

(
cosh(2z) ∂L

∂x

)
+ ∂

∂ t

(
sinh(2z) ∂L

∂y

)
+ ∂L

∂ z = 0,

(12)

Proof: Then the vector field defined by

V = ϕ(Ψ) = ϕ(X ∂

∂x +Y ∂

∂y +Z ∂

∂ z ), (13)

is thought to be Liouville vector field on almost paracontact

metric manifold (T M,Ψ,η ,g). ΦL = −d(dϕ L) is the closed

2-form given by (9) such that

d =
∂

∂x
dx+

∂

∂y
dy+

∂

∂ z
dz, d : F(M)→∧1M, (14)
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and dϕ = i
ϕ

d−di
ϕ
,

dϕ = ϕ (d) = ϕ

(
∂

∂x dx+ ∂

∂y dy+ ∂

∂ z dz
)

= ϕ

(
∂

∂x

)
dx+ϕ

(
∂

∂y

)
dy+ϕ

(
∂

∂ z

)
dz

=
(

cosh(2z) ∂

∂ z

)
dx+

(
sinh(2z) ∂

∂ z

)
dy

+
(

cosh(2z) ∂

∂x − sinh(2z) ∂

∂y

)
dz,

(15)

and

dϕ L = ϕ(Ψ)(L

=
(

cosh(2z) ∂L
∂ z

)
dx+

(
sinh(2z) ∂L

∂ z

)
dy

+
(

cosh(2z) ∂LX
∂x − sinh(2z) ∂L

∂y

)
dz.

(16)

Also, the vertical differentiation dϕ is given by d is the usual

exterior derivation. Then there is the following result. Here,

we can be account Euler-Lagrange equations for classical and

quantum mechanics on almost paracontact metric manifold

(T M,ϕ,ξ ,η ,g). We get the equations given by

d = ∂

∂x dx+ ∂

∂y dy+ ∂

∂ z dz,

dϕ = ϕ( ∂

∂x )dx+ϕ( ∂

∂y )dy+ϕ( ∂

∂ z )dz.

(17)

Let we account ΦL

ΦL =−d(dϕ L)

=
[
−cosh(2z) ∂ 2L

∂x∂ z

]
dx∧dx

+
[
−cosh(2z) ∂ 2L

∂ z∂y

]
dy∧dx+

[
−2sinh(2z) ∂L

∂ z

]
dz∧dx

+
[
−sinh(2z) ∂ 2L

∂x∂ z

]
dx∧dy

+
[
−sinh(2z) ∂ 2L

∂y∂ z

]
dy∧dy−

[
2cosh(2z) ∂L

∂ z

]
dz∧dy

+
[
−cosh(2z) ∂ 2L

∂x∂x + sinh(2z) ∂ 2L
∂x∂y

]
dx∧dz

+
[
sinh(2z) ∂ 2L

∂y∂y − cosh(2z) ∂ 2L
∂x∂y

]
dy∧dz

+
[
−2sinh(2z) ∂L

∂x +2cosh(2z) ∂L
∂y

]
dz∧dz.

(18)

Thus, ΦL(Ψ) is found using (18).as follows:

ΦL(Ψ) =

−X sinh(2z) ∂ 2L
∂x∂ z dy−X cosh(2z) ∂ 2L

∂x∂x dz+X sinh(2z) ∂ 2L
∂x∂y dz

+X cosh(2z) ∂ 2L
∂ z∂y dy+X2sinh(2z) ∂L

∂ z dz+Y sinh(2z) ∂ 2L
∂x∂ z dx

−Y cosh(2z) ∂ 2L
∂ z∂y dx−Y cosh(2z) ∂ 2L

∂y∂x dz+Y sinh(2z) ∂ 2L
∂y∂y dz

+Y 2cosh(2z) ∂L
∂ z dz+Z cosh(2z) ∂ 2L

∂x∂x dx−Z sinh(2z) ∂ 2L
∂x∂y dx

+Z cosh(2z) ∂ 2L
∂x∂y dy−Z sinh(2z) ∂ 2L

∂y∂y dy−Z2sinh(2z) ∂L
∂ z dx

−Z2cosh(2z) ∂L
∂ z dy.

(19)

Also, V = ϕ(Ψ) a Liouville vector field. for EL = V (L)−L
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the energy function of system is

EL = ϕ(Ψ)(L)−L

= ϕ

(
X ∂L

∂x +Y ∂L
∂y +Z ∂L

∂ z

)
−L

= X cosh(2z) ∂L
∂ z +Y sinh(2z) ∂L

∂ z

+Z cosh(2z) ∂L
∂x −Z sinh(2z) ∂L

∂y −L,

(20)

and the differential of EL is

dEL = X cosh(2z) ∂ 2L
∂x∂ z dx+X cosh(2z) ∂ 2L

∂y∂ z dy+2X sinh(2z) ∂L
∂ z dz

+Y sinh(2z) ∂ 2L
∂x∂ z dx+Y sinh(2z) ∂ 2L

∂y∂ z dy+2Y cosh(2z) ∂L
∂ z dz

+Z cosh(2z) ∂ 2L
∂x∂x dx+Z cosh(2z) ∂ 2L

∂y∂x dy+2Z sinh(2z) ∂L
∂x dz

−Z sinh(2z) ∂ 2L
∂y∂x dx−Z sinh(2z) ∂ 2L

∂y∂x dy−2Z cosh(2z) ∂L
∂y dz

− ∂L
∂y dy− ∂L

∂x dx− ∂L
∂ z dz.

(21)

Using (9), we get first and second equations as follows:

−X
[
cosh(2z) ∂ 2L

∂x∂x + sinh(2z) ∂ 2L
∂x∂y

]
dx

−X
[
−sinh(2z) ∂ 2L

∂x∂x − cosh(2z) ∂ 2L
∂x∂y

]
dy

−X ∂ 2L
∂x∂ z dz−Y

[
cosh(2z) ∂ 2L

∂y∂x + sinh(2z) ∂ 2L
∂y∂y

]
dx

−Y
[
−sinh(2z) ∂ 2L

∂y∂x − cosh(2z) ∂ 2L
∂y∂y

]
dy−Y ∂ 2L

∂y∂ z dz

−Z
[
2sinh(2z) ∂L

∂x + cosh(2z) ∂ 2L
∂ z∂x +2cosh(2z) ∂L

∂y + sinh(2z) ∂ 2L
∂ z∂y

]
dx

−Z
[
−2cosh(2z) L

∂x − sinh(2z) ∂ 2L
∂ z∂x −2sinh(2z) ∂L

∂y − cosh(2z) ∂ 2L
∂ z∂y

]
dy

−Z ∂ 2L
∂ z∂ z dz =− ∂L

∂x dx− ∂L
∂y dy− ∂L

∂ z dz.
(22)

As a result of this process, the following equation is reached:

1. −
(

X cosh(2z) ∂ 2L
∂x∂ z +Y cosh(2z) ∂ 2L

∂y∂ z +2Z sinh(2z) ∂L
∂ z

)
dx =− ∂L

∂x ,

2. −
(

X sinh(2z) ∂ 2L
∂x∂ z +Y sinh(2z) ∂ 2L

∂y∂ z +2Z cosh(2z) ∂L
∂ z

)
dy =− ∂L

∂y ,

3. −
(

X cosh(2z) ∂ 2L
∂x∂x +Y cosh(2z) ∂ 2L

∂y∂x +2Z sinh(2z) ∂L
∂x

)
dz

+
(

X sinh(2z) ∂ 2L
∂x∂y +Y sinh(2z) ∂ 2L

∂y∂y +2Z cosh(2z) ∂L
∂y

)
dz =− ∂L

∂ z .

(23)

If we take of the curve α, for all equations, as an integral

curve of Ψ such that it is Ψ(α) = ∂

∂ t (α) and we find the fol-

lowing equations:

1. − ∂

∂ t

(
cosh(2z) ∂L

∂ z

)
+ ∂L

∂x = 0,

2. − ∂

∂ t

(
sinh(2z) ∂L

∂ z

)
+ ∂L

∂y = 0,

3. − ∂

∂ t

(
cosh(2z) ∂L

∂x

)
+ ∂

∂ t

(
sinh(2z) ∂L

∂y

)
+ ∂L

∂ z = 0,

(24)

such that the differential equations (24) are named Euler-

Lagrange equations on almost paracontact metric manifold

such that this is shown in the form of (T M,ϕ,Ψ,η ,g). Ad-

ditionally, therefore the triple (T M,ΦL,Ψ) is called a Euler-

Lagrangian mechanical system on (T M,ϕ,Ψ,η ,g).

VI. EQUATIONS SOLVING WITH COMPUTER AND

GRAPH OF SYSTEM

The location of each object in space is represented by three

dimensions in physical space. These three dimensions can be

labeled by a combination of three chosen from the terms time,

length, width, height, depth, mass, density and breadth. (12)

are partial differential equations. We, using Maple program of

the equation system (12) solution is

L(x,y,z, t) = F1(t). (25)

It is well known that paracontact geometry is in many ways

an odd-dimensional counterpart of symplectic geometry such

that it belongs to the even-dimensional world. Both para-

contact and an almost paracontact metric structure motivat-

ed by the mathematical formalism of classical, analytical and

dynamical mechanics. Additionally, one can consider either

the even-dimensional phase space of a mechanical system or

the odd-dimensional extended phase space that includes the

time variable. Also, classical field theory utilizes tradition-

ally the language of Euler-Lagrangian dynamics. This the-

ory was extended to time-dependent classical mechanics. A

Euler-Lagrange space has been certified as an excellent mod-

el for some important problems in relativity, gauge theory and
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electromagnetism. Euler-Lagrangian gives a model for both

the gravitational and electromagnetic fields in a very natural

blending of the geometrical structures of the space with the

characteristic properties of these physical fields.

VII. CONCLUSION

Our universe is three-dimensional such that Einstein added

time as the fourth dimension. By this study the above men-

tioned forms, we were transferred 3-dimensional real number

space on an almost paracontact manifold for the mechanical

system. Euler-Lagrangian dynamics is used as a model for

field theory, quantum physics, optimal control, biology and

fluid dynamics [24].

The obtained time-dependent equations system (12) are

very important to explain the rotational spatial mechanical-

physical problems. In this study, the Euler-Lagrange par-

tial equations (12) derived on almost paracontact metric man-

ifolds and closed solutions (25) of equations system were

found using symbolic computation program Maple. This ap-

proach may be suggested [25] to deal with problems in elec-

trical,magnetic, and gravitational fields force for geodesics on

defined space moving objects.
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