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Recently, secure quantum key distribution based on Deutsch’s algorithm using the Bell state is reported [1].

Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key

distribution protocol. We present secure quantum key distribution based on a special Deutsch-Jozsa algorithm

using Greenberger-Horne-Zeilinger states. Originally, Bob has promised to use a function f which is of one of

the two kinds; either the value of f (x) is constant for all x, or the value of f (x) is balanced, that is, it is equal

to 1 for exactly half of all the possible x, and 0 for the other half. Here, Bob uses a special function when it

is not constant. We may say the value of f (x) is special. Our quantum key distribution overcomes a classical

counterpart by a factor O(2N).

PACS numbers: 03.67.Lx, 03.67.Ac, 03.67.Dd

Keywords: Quantum computation architectures and implementations, Quantum algorithms, protocols, and simulations, Quan-

tum cryptography

I. INTRODUCTION

The quantum theory (cf. [2–7]) gives approximate and at

times remarkably accurate numerical predictions. Much ex-

perimental data approximately fits to the quantum predictions

for the past some 100 years. We may not doubt the correctness

of the quantum theory. The quantum theory, in these days,

keeps saying modern science with respect to information the-

ory, where the science is called the quantum information the-

ory [7]. Therefore, the quantum theory gives us another very

useful theory in order to create new information science and to

explain the handling of raw experimental data in our physical

world.

As for foundation of the quantum theory, Leggett-type non-

local variables theory [8] is experimentally investigated [9–

11]. The experiments report that the quantum theory does not

accept Leggett-type non-local variables interpretation. How-

ever, there are debates for the conclusions of the experiments.

See Refs. [12–14].

Meanwhile, as for application of the quantum theory, im-

plementation of a quantum algorithm to solve Deutsch’s prob-

lem [15–17] on a nuclear magnetic resonance quantum com-

puter is reported firstly [18]. An implementation of the

Deutsch-Jozsa algorithm on an ion-trap quantum computer is

also reported [19]. There are several attempts to use single-

photon two-qubit states for quantum computing. Oliveira
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et al. implements Deutsch’s algorithm with polarization

and transverse spatial modes of the electromagnetic field as

qubits [20]. Single-photon Bell states are prepared and mea-

sured [21]. Also the decoherence-free implementation of

Deutsch’s algorithm is reported by using such single-photon

and by using two logical qubits [22]. More recently, a one-

way based experimental implementation of Deutsch’s algo-

rithm is reported [23]. In 1993, the Bernstein-Vazirani al-

gorithm was reported [24, 25]. It can be considered as an

extended Deutsch-Jozsa algorithm. In 1994, Simon’s algo-

rithm was reported [26]. Implementation of a quantum al-

gorithm to solve the Bernstein-Vazirani parity problem with-

out entanglement on an ensemble quantum computer is re-

ported [27]. Fiber-optics implementation of the Deutsch-

Jozsa and Bernstein-Vazirani quantum algorithms with three

qubits is discussed [28]. Quantum learning robust against

noise is studied [29]. A quantum algorithm for approximat-

ing the influences of Boolean functions and its applications is

recently reported [30]. Quantum computation with coherent

spin states and the close Hadamard problem is also discussed

[31]. Transport implementation of the Bernstein-Vazirani al-

gorithm with ion qubits is more recently reported [32]. Quan-

tum Gauss-Jordan elimination and simulation of accounting

principles on quantum computers are discussed [33]. Finally,

we mention that the dynamical analysis of Grover’s search al-

gorithm in arbitrarily high-dimensional search spaces is stud-

ied [34].

On the other hand, the earliest quantum algorithm, the

Deutsch-Jozsa algorithm, is representative to show that quan-

tum computation is faster than classical counterpart with

a magnitude that grows exponentially with the number of

qubits. In 2015, it was discussed that the Deutsch-Jozsa al-

gorithm can be used for quantum key distribution [35]. In

2017, it was discussed that secure quantum key distribution

based on Deutsch’s algorithm using an entangled state [1].

In the paper, we present secure quantum key distribu-

tion based on a special Deutsch-Jozsa algorithm by using

Greenberger-Horne-Zeilinger (GHZ) state [36, 37]. Origi-

nally, Bob has promised to use a function f which is of one

of the two kinds; either the value of f (x) is constant for all x,

or the value of f (x) is balanced, that is, it is equal to 1 for ex-

actly half of all the possible x, and 0 for the other half. Here,

Bob uses a special function when it is not constant. We may

say the value of f (x) is special. Our quantum key distribution

overcomes a classical counterpart by a factor O(2N). The se-

curity of the protocol is based on it in Ekert 91 protocol [38].

That is, Eve must destroy the GHZ state.

The paper is organized as follows:

In Sec. II, we review Deutsch’s algorithm along with

Ref. [7].

In Sec. III, we review the Deutsch-Jozsa algorithm along

with Ref. [7].

In Sec. IV, we study the special Deutsch-Jozsa algorithm.

In Sec. V, we study the special Deutsch-Jozsa algorithm by

using another input state. In the case, we cannot perform the

special Deutsch-Jozsa algorithm.

In Sec. VI, we study the special Deutsch-Jozsa algorithm

by using the GHZ state.

In Sec. VII, we discuss the fact that the special Deutsch-

Jozsa algorithm can be used for quantum key distribution by

using the GHZ state.

Section VIII concludes the paper.

II. A REVIEW OF DEUTSCH’S ALGORITHM

In this section, we review Deutsch’s algorithm along with

Ref. [7].

Quantum parallelism is a fundamental feature of many

quantum algorithms. It allows quantum computers to evaluate

the values of a function f (x) for many different x simultane-

ously. Suppose

f : {0,1}→ {0,1}, (1)

is a function with a one-bit domain and range. A convenient

way of computing the function on a quantum computer is to

consider a two-qubit quantum computer which starts in the

state

|x,y〉. (2)
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With an appropriate sequence of logic gates it is possible to

transform this state into

|x,y⊕ f (x)〉, (3)

where ⊕ indicates addition modulo 2. We give the transfor-

mation defined by the map

|x,y〉 → |x,y⊕ f (x)〉, (4)

a name, U f .

Deutsch’s algorithm combines quantum parallelism with a

property of quantum mechanics known as interference. Let us

use the Hadamard gate to prepare the first qubit

|0〉, (5)

as the superposition

(|0〉+ |1〉)/
√

2, (6)

but let us prepare the second qubit as the superposition

(|0〉− |1〉)/
√

2, (7)

using the Hadamard gate applied to the state

|1〉. (8)

The Hadamard gate is as H = 1√
2

1 1

1 −1

 or equivalently

H =
1√
2
(|0〉〈1|+ |1〉〈0|+ |0〉〈0|− |1〉〈1|). (9)

Let us follow the states along to see what happens in this cir-

cuit. The input state

|ψ0〉= |01〉, (10)

is sent through two Hadamard gates to give

|ψ1〉=
[
|0〉+ |1〉√

2

][
|0〉− |1〉√

2

]
. (11)

A little thought shows that if we apply U f to the state

|x〉(|0〉− |1〉)/
√

2, (12)

then we obtain the state

(−1) f (x)|x〉(|0〉− |1〉)/
√

2. (13)

Applying U f to |ψ1〉 therefore leaves us with one of the two

possibilities:

|ψ2〉=


±
[
|0〉+ |1〉√

2

][
|0〉− |1〉√

2

]
if f (0) = f (1)

±
[
|0〉− |1〉√

2

][
|0〉− |1〉√

2

]
if f (0) 6= f (1).

(14)

The final Hadamard gate on the qubits thus gives us

|ψ3〉=


±|0〉|1〉 if f (0) = f (1)

±|1〉|1〉 if f (0) 6= f (1).

(15)

So by measuring the first qubit we may determine f (0)⊕ f (1).

This is very interesting indeed: the quantum circuit gives us

the ability to determine a global property of f (x), namely

f (0)⊕ f (1), using only one evaluation of f (x)! This is faster

than is possible with a classical apparatus, which would re-

quire at least two evaluations.

III. A REVIEW OF THE DEUTSCH-JOZSA ALGORITHM

The earliest quantum algorithm, the Deutsch-Jozsa algo-

rithm, is representative to show that quantum computation is

faster than classical counterpart with a magnitude that grows

exponentially with the number of qubits.

Let us follow the argumentation presented in [7]. —— The

application, known as Deutsch’s problem, may be described as

the following game. Alice, in Amsterdam, selects a number

x from 0 to 2N − 1, and mails it in a letter to Bob, in Boston.

Bob calculates the value of some function

f : {0, . . . ,2N−1}→ {0,1}, (16)

and replies with the result, which is either 0 or 1. Now, Bob

has promised to use a function f which is of one of the two

kinds; either the value of f (x) is constant for all x, or the value

of f (x) is balanced, that is, it is equal to 1 for exactly half of

all the possible x, and 0 for the other half. Alice’s goal is to

determine with certainty whether Bob has chosen a constant

or a balanced function, corresponding with him as little as

possible. How fast can she succeed?
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In the classical case, Alice may only send Bob one value of

x in each letter. At worst, Alice will need to query Bob at least

2N/2+1, (17)

times, since she may receive 2N/2 0s before finally getting a

1, telling her that Bob’s function is balanced. The best de-

terministic classical algorithm she can use therefore requires

2N/2+ 1 queries. Note that in each letter, Alice sends Bob

N bits of information. Furthermore, in this example, physical

distance is being used to artificially elevate the cost of cal-

culating f (x), but this is not needed in the general problem,

where f (x) may be inherently difficult to calculate.

If Bob and Alice were able to exchange qubits, instead of

just classical bits, and if Bob agreed to calculate f (x) using a

unitary transformation U f , then Alice could achieve her goal

in just one correspondence with Bob, using the following al-

gorithm.

Alice has an N qubit register to store her query in, and a

single qubit register which she will give to Bob, to store the

answer in. She begins by preparing both her query and an-

swer registers in a superposition state. Bob will evaluate f (x)

using quantum parallelism and leave the result in the answer

register. Alice then interferes states in the superposition using

a Hadamard transformation (a unitary transformation),

H = (σx +σz)/
√

2, (18)

on the query register, and finishes by performing a suitable

measurement to determine whether f was constant or bal-

anced.

Let us follow the quantum states through this algorithm.

The input state is

|ψ0〉= |0〉⊗N |1〉. (19)

Here the query register describes the state of N qubits all pre-

pared in the

|0〉, (20)

state. After the Hadamard transformation on the query register

and the Hadamard gate on the answer register we have

|ψ1〉= ∑
x∈{0,1}N

|x〉√
2N

[
|0〉− |1〉√

2

]
. (21)

The query register is now a superposition of all values, and

the answer register is in an evenly weighted superposition of

|0〉 and |1〉. Next, the function f is evaluated (by Bob) using

U f : |x,y〉 → |x,y⊕ f (x)〉, (22)

giving

|ψ2〉=±∑
x

(−1) f (x)|x〉√
2N

[
|0〉− |1〉√

2

]
. (23)

Here

y⊕ f (x), (24)

is the bitwise XOR (exclusive OR) of y and f (x). Alice now

has a set of qubits in which the result of Bob’s function eval-

uation is stored in the amplitude of the qubit superposition

state. She now interferes terms in the superposition using a

Hadamard transformation on the query register. To determine

the result of the Hadamard transformation it helps to first cal-

culate the effect of the Hadamard transformation on a state

|x〉. (25)

By checking the cases x = 0 and x = 1 separately we see that

for a single qubit

H|x〉= ∑
z
(−1)xz|z〉/

√
2. (26)

Thus

H⊗N |x1, . . . ,xN〉=
∑z1,...,zN (−1)x1z1+···+xN zN |z1, . . . ,zN〉√

2N
.(27)

This can be summarized more succinctly in the very useful

equation

H⊗N |x〉= ∑z(−1)x·z|z〉√
2N

, (28)

where

x · z, (29)

is the bitwise inner product of x and z, modulo 2. Using this

equation and (23) we can now evaluate |ψ3〉,

|ψ3〉=±∑
z

∑
x

(−1)x·z+ f (x)|z〉
2N

[
|0〉− |1〉√

2

]
. (30)

Alice now observes the query register. Note that the absolute

value of the amplitude for the state

|0〉⊗N , (31)
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is

∑
x
(−1) f (x)/2N . (32)

Let’s look at the two possible cases — f constant and f bal-

anced — to discern what happens. In the case where f is

constant the absolute value of the amplitude for

|0〉⊗N , (33)

is +1. Because

|ψ3〉, (34)

is of unit length it follows that all the other amplitudes must

be zero, and an observation will yield

0, (35)

for all N qubits in the query register. Thus, global measure-

ment outcome is

0. (36)

If f is balanced then the positive and negative contributions to

the absolute value of the amplitude for

|0〉⊗N , (37)

cancel, leaving an amplitude of zero, and a measurement must

yield a result other than

0, (38)

that is,

+1, (39)

on at least one qubit in the query register. Summarizing, if

Alice measures all 0s and global measurement outcome is 0

the function is constant; otherwise the function is balanced.

IV. A SPECIAL DEUTSCH-JOZSA ALGORITHM

In this section, we study a special Deutsch-Jozsa algorithm.

Originally, Bob has promised to use a function f which is

of one of the two kinds; either the value of f (x) is constant for

all x, or the value of f (x) is balanced, that is, it is equal to 1

for exactly half of all the possible x, and 0 for the other half.

Here, Bob uses a special function when it is not constant. We

may say the value of f (x) is special.

We have the following when the value of f (x) is special.

∑
x∈{0,1}N

(−1) f (x)|x〉√
2N

=

[
|0〉− |1〉√

2

]⊗N

. (40)

That is, the function has the following character:

f (x) =


0 if 1 is even in x

+1 if 1 is odd in x.

(41)

Alice’s goal is to determine with certainty whether Bob has

chosen a constant or a special function, corresponding with

him as little as possible.

The input state

|ψ0〉= |0〉⊗N |1〉, (42)

is sent through N +1 Hadamard gates to give

|ψ1〉=
[
|0〉+ |1〉√

2

]⊗N [ |0〉− |1〉√
2

]
. (43)

We apply U f of obtaining the following state

|ψ2〉=±∑
x

(−1) f (x)|x〉√
2N

[
|0〉− |1〉√

2

]
. (44)

Applying U f (unitary operation) to |ψ1〉 therefore leaves us

with one of the two possibilities:

|ψ2〉=


±
[
|0〉+ |1〉√

2

]⊗N [ |0〉− |1〉√
2

]
if f (x) = constant

±
[
|0〉− |1〉√

2

]⊗N [ |0〉− |1〉√
2

]
if f (x) = special.

(45)

The final Hadamard gate on the qubits thus gives us

|ψ3〉=


±|0〉⊗N |1〉 if f (x) = constant

±|1〉⊗N |1〉 if f (x) = special.

(46)

In the case we perform the special Deutsch-Jozsa algorithm.

V. FAILING THE SPECIAL DEUTSCH-JOZSA

ALGORITHM

In this section, we study the special Deutsch-Jozsa algo-

rithm by using another input state. In the case, we cannot

perform the algorithm as shown below.
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The input state

|ψ0〉= |1〉⊗N |0〉, (47)

is sent through N +1 Hadamard gates to give

|ψ1〉=
[
|0〉− |1〉√

2

]⊗N [ |0〉+ |1〉√
2

]
. (48)

We apply U f to the following state

2N︷ ︸︸ ︷
|a〉− |b〉+ |c〉− · · ·+ |d〉√

2N
|x〉. (49)

If x = 1

|a〉|1〉− |b〉|1〉+ |c〉|1〉− · · ·+ |d〉|1〉√
2N

, (50)

we have

|a〉| f (a)〉− |b〉| f (b)〉+ |c〉| f (c)〉− · · ·+ |d〉| f (d)〉√
2N

, (51)

and if x = 0

|a〉|0〉− |b〉|0〉+ |c〉|0〉− · · ·+ |d〉|0〉√
2N

, (52)

we have

|a〉| f (a)〉− |b〉| f (b)〉+ |c〉| f (c)〉− · · ·+ |d〉| f (d)〉√
2N

. (53)

Thus,

|a〉(| f (a)〉+ | f (a)〉)−|b〉(| f (b)〉+ | f (b)〉)+ |c〉(| f (c)〉+ | f (c)〉)−·· ·+ |d〉(| f (d)〉+ | f (d)〉)√
2N

. (54)

Applying U f to |ψ1〉 therefore leaves us with one of the two

possibilities:

|ψ2〉=


±
[
|0〉− |1〉√

2

]⊗N [ |0〉+ |1〉√
2

]
if f (x) = constant

±
[
|0〉− |1〉√

2

]⊗N [ |0〉+ |1〉√
2

]
if f (x) = special.

(55)

The final Hadamard gate on the qubits thus gives us

|ψ3〉=


±|1〉⊗N |0〉 if f (x) = constant

±|1〉⊗N |0〉 if f (x) = special.

(56)

In the case we fail of performing the special Deutsch-Jozsa

algorithm.

VI. THE SPECIAL DEUTSCH-JOZSA ALGORITHM

USING THE GHZ STATE

In this section, we study the special Deutsch-Jozsa algo-

rithm by using the GHZ state.

The input state

|ψ0〉=
|1〉⊗N |0〉+ |0〉⊗N |1〉√

2
, (57)

is sent through N +1 Hadamard gates to give

|ψ1〉=
1√
2
(

[
|0〉− |1〉√

2

]⊗N [ |0〉+ |1〉√
2

]
+

[
|0〉+ |1〉√

2

]⊗N [ |0〉− |1〉√
2

]
). (58)

Applying U f to |ψ1〉 therefore leaves us with one of the two
possibilities:

|ψ2〉=±
1√
2
(

[
|0〉− |1〉√

2

]⊗N [ |0〉+ |1〉√
2

]
±
[
|0〉+ |1〉√

2

]⊗N [ |0〉− |1〉√
2

]
), (59)

if f (x) = constant, or

|ψ2〉=±
1√
2
(

[
|0〉− |1〉√

2

]⊗N [ |0〉+ |1〉√
2

]
±
[
|0〉− |1〉√

2

]⊗N [ |0〉− |1〉√
2

]
), (60)

if f (x) = special. The final Hadamard gate on the qubits thus

gives us

|ψ3〉=


±|1〉

⊗N |0〉± |0〉⊗N |1〉√
2

if f (x) = constant (GHZ)

±|1〉
⊗N |0〉± |1〉⊗N |1〉√

2
if f (0) = special (separable).

(61)

So by measuring the qubits (by means of the GHZ measure-

ment) we may determine f (x) is constant or special. The GHZ

measurement is explained as follows: Alice and Bob prepare

the following GHZ basis

|Ψ+〉=
|1〉⊗N |0〉+ |0〉⊗N |1〉√

2
,

|Ψ−〉=
|1〉⊗N |0〉− |0〉⊗N |1〉√

2
,

|Φ+〉=
|1〉⊗N |1〉+ |0〉⊗N |0〉√

2
,

|Φ−〉=
|1〉⊗N |1〉− |0〉⊗N |0〉√

2
. (62)

If the state |ψ3〉 is the GHZ state, we have

|〈ψ3|Ψ+〉|2 = 1 or |〈ψ3|Ψ−〉|2 = 1 or |〈ψ3|Φ+〉|2 = 1 or |〈ψ3|Φ−〉|2 = 1. (63)

Therefore the measurement outcome should be 1 if the func-
tion is constant. If the state |ψ3〉 is a separable state, we have

|〈ψ3 |Ψ+〉|2 = 1/2 or |〈ψ3 |Ψ−〉|
2 = 1/2 or |〈ψ3 |Φ+〉|2 = 1/2 or |〈ψ3 |Φ−〉|

2 = 1/2. (64)

Therefore the measurement outcome should not be 1 if the

function is special.
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VII. QUANTUM KEY DISTRIBUTION BASED ON THE

SPECIAL DEUTSCH-JOZSA ALGORITHM

We discuss the fact that the special Deutsch-Jozsa algorithm

can be used for quantum key distribution by using the GHZ

state.

Alice and Bob have promised to use a function f which is

of one of the two kinds; either the value of f is constant or

special. To Eve, it is secret. Alice’s and Bob’s goal is to de-

termine with certainty whether they have chosen a constant or

a special function without information of the function to Eve.

If the function is constant the output qubits are fullly entan-

gled (the GHZ state), otherwise a separable state. Alice and

Bob perform the GHZ measurement mentioned above. Alice

and Bob share one secret bit if they determine the function

f by getting a suitable measurement outcome. Eve destroys

fully entangled state into separable state. The security of our

protocol is based on it in Ekert 91 protocol [38].

• First, Alice prepares the entangled qubits, applies the

Hadamard transformation to the state, and sends the

output state described in the GHZ state to Bob.

• Next, Bob randomly picks a function “ f " that is either

special or constant and Bob applies U f . He then sends

the N qubits to Alice.

• Finally, Alice and Bob perform the GHZ measurement.

She learns whether f was special or constant. If the final

qubits are fully entangled, then the function is constant.

If the final qubits are not the GHZ state, then the func-

tion is special. Alice and Bob now share a secret bit of

information (the “type" of f (x)).

• The result of the GHZ measurement is 1 if the function

is constant.

• Alice and Bob compare a subset of all the results of the

GHZ measurements when the function is constant; all

of them should be 1.

• Eve must destroy the GHZ state (Ekert 91).

• Eve is detected in the following case; The result of the

GHZ measurement is not 1 and the function is constant.

We have shown that the special Deutsch-Jozsa algorithm

can be used for secure quantum key distribution. The security

is based on it in Ekert 91 protocol. Our quantum key distribu-

tion overcomes a classical counterpart by a facter O(2N).

VIII. CONCLUSIONS

In conclusion, we have presented quantum key distribu-

tion based on a special Deutsch-Jozsa algorithm by using

Greenberger-Horne-Zeilinger states. Originally, Bob has had

promised to use a function f which is of one of the two kinds;

either the value of f (x) is constant for all x, or the value of

f (x) is balanced, that is, it is equal to 1 for exactly half of all

the possible x, and 0 for the other half. Here, Bob has used

a special function when it is not constant. We may have said

the value of f (x) is special. Our quantum key distribution has

overcome a classical counterpart by a factor O(2N).
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