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Here, we present various new forms of the Bernstein-Vazirani algorithm beyond qubit systems. First, we

review the Bernstein-Vazirani algorithm for determining a bit string. Second, we discuss the generalized

Bernstein-Vazirani algorithm for determining a natural number string. The result is the most notable gener-

alization. Thirdly, we discuss the generalized Bernstein-Vazirani algorithm for determining an integer string.

Finally, we discuss the generalized Bernstein-Vazirani algorithm for determining a complex number string. The

speed of determining the strings is shown to outperform the best classical case by a factor of the number of the

systems in every cases. Additionally, we propose a method for calculating many different matrices simultane-

ously. The speed of solving the problem is shown to outperform the classical case by a factor of the number of

the elements of them. We hope our discussions will give a first step to the quantum simulation problem.

PACS numbers: 03.67.Ac, 03.67.Lx, 03.65.Ca
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I. INTRODUCTION

The Bernstein-Vazirani algorithm aims at determining a bit

string [1, 2]. Regardless of entanglement properties, an ex-

perimental implementation of a quantum algorithm with the

aim of solving the Bernstein-Vazirani parity problem is inves-

tigated [3]. Using three qubits, Brainis et al. suggests fiber-

optics implementations of the Deutsch-Jozsa and Bernstein-

Vazirani quantum algorithms [4]. Moreover, a variant of

the algorithm for quantum learning algorithm, a robust one

against noise, is studied by Cross et al. [5]. In 2015, based on

the Bernstein-Vazirani algorithm, Li and Yang investigated the

influences of variables on Boolean functions and its applica-

tions [6]. The Bernstein-Vazirani algorithm is also a versatile

in quantum key distribution [7, 8] and in a transport imple-

mentation with ion qubits [9]. In 2016, Krishna et al. intro-

duced a generalization of the Bernstein-Vazirani algorithm to

qudit systems [10]. A simple algorithm for complete factor-

ization of an N-partite pure quantum state is discussed [11].

Fujikawa et al. discusses a classical limit of Grover’s algo-

rithm induced by dephasing: coherence versus entanglement

[12]. Quantum dialogue protocol based on Grover’s search
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algorithms is presented [13].

Using a Boolean-valued function (the outputs are either 0

or 1), the Bernstein-Vazirani algorithm was extended for de-

termining the values of the function by Nagata et al. in 2017

[14, 15]. In the method, the values of the function are re-

stricted to {0,1}. With respect to the provided extension, not

only a calculation of multiplications, but also the root finding

problem can be carried out based on quantum computation

[15, 16].

To determine the values of a function, which are extended to

the natural numbers, Nagata et al. uses the Bernstein-Vazirani

algorithm efficiently [17]. The extended algorithm is capable

of determining a natural number string instead of a bit string.

It is worth mentioning that a homogeneous linear function can

be determined by using the provided extension as a quantum

algorithm [18].

Likewise, an extension of the Bernstein-Vazirani algorithm

can be utilized to determine the values of a function, which

are extended to integers according to Ref. [19], meaning that

the extended algorithm aims at figuring out an integer string

instead of a natural number string. Moreover, quantum com-

munication can be performed by determining a matrix using

the provided extension [20].

Integers are more general than natural numbers. Complex

numbers are more general than integers. In fact, we solve

many problems by using complex numbers and we cannot an-

swer many problems without them. Hence, we definitely need

complex numbers. Thus, we want to generalize the Bernstein-

Vazirani algorithm for determining the values of a special

function that the values are complex numbers because the util-

ity of it becomes very wider than previous ones. For example,

we would find all the roots in the root finding problem si-

multaneously. Also, we can plot a graph of a given function

immediately.

Quantum mechanics is formulated by the matrix theory. So

it is useful to treat matrices by quantum computing if we want

to simulate quantum phenomena by such a computer. For ex-

ample, it is desirable if quantum computers calculate highly

complicated quantum chemistry phenomena. Now, we gener-

alize the Bernstein-Vazirani algorithm from a bit string into a

matrix string. We hope our discussions will give a first step to

the quantum simulation problem.

In this article, we present various new forms of the

Bernstein-Vazirani algorithm beyond qubit systems. First, we

review the Bernstein-Vazirani algorithm for determining a bit

string. Second, we discuss the generalized Bernstein-Vazirani

algorithm for determining a natural number string. Thirdly,

we discuss the generalized Bernstein-Vazirani algorithm for

determining an integer string. Finally, we discuss the general-

ized Bernstein-Vazirani algorithm for determining a complex

number string. The speed of determining the strings is shown

to outperform the best classical case by a factor of the num-

ber of the systems in every cases. We hope the generalization

would improve quantum algorithm science.

Additionally, we propose a method for calculating many

different matrices A,B,C, ... into g(A),g(B),g(C), ... simulta-

neously. The speed of solving the problem is shown to out-

perform the classical case by a factor of the number of the

elements of them.

The article is organized as follows.

In Sec. II, we review the Bernstein-Vazirani algorithm for

determining a bit string. The algorithm has the feature of the

Hadamard transform of a quantum state in a two-dimensional

space to solve the problem of finding a bit string.

In Sec. III, we discuss the generalized Bernstein-Vazirani

algorithm for determining a natural number string. The gener-

alized algorithm presented here has the feature of the normal

Fourier transform of a quantum state in a finite-dimensional

space to solve the problem of finding a string of natural num-

bers.

In Sec. IV, we discuss the generalized Bernstein-Vazirani

algorithm for determining an integer string. The general-

ized algorithm presented here has the feature of a general

discrete non-unitary transform of a quantum state in a finite-

dimensional space to solve the problem of finding a string of

integers.

In Sec. V, we discuss the generalized Bernstein-Vazirani

algorithm for determining a complex number string. The gen-
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eralized algorithm presented here has the feature of a general

continuous non-unitary transform of a quantum state in an

infinite-dimensional space to solve the problem of finding a

string of complex numbers.

In Sec. VI, we propose a method for calculating many dif-

ferent matrices A,B,C, ... into g(A),g(B),g(C), ... simultane-

ously.

Section VII concludes the article.

II. ALGORITHM FOR DETERMINING A BIT STRING

In this section, we review the Bernstein-Vazirani algorithm.

We suppose that the following sequence of complex num-

bers is given

a1,a2,a3, . . . ,aN . (1)

We introduce a special function

g : C→{0,1}. (2)

Our goal is for determining the following values (as a bit

string)

g(a1),g(a2),g(a3), . . . ,g(aN). (3)

Recall that in the best classical case, we need N queries, that

is, N separate evaluations of the function (2). In case of the

Bernstein-Vazirani algorithm, we shall require a single query.

We define

g(a) = (g(a1),g(a2),g(a3), . . . ,g(aN)), (4)

where each entry of g(a) is a bit. Here g(a) ∈ {0,1}N . We

define f (x) as follows:

f (x) = (g(a) · x) mod 2≡ g(a)� x

= {g(a1)x1 +g(a2)x2 + · · ·+g(aN)xN} mod 2, (5)

where x = (x1, ...,xN) and x j ∈ {0,1}. The entries of x and

g(a j) are in {0,1}. Let us follow the quantum states through

our algorithm.

The input state is

|ψ0〉= |0〉⊗N |1〉 (6)

where |0〉⊗N =

N︷ ︸︸ ︷
|0〉⊗ |0〉⊗ ...⊗|0〉. After the componentwise

Hadamard transforms on the state (6)

N︷ ︸︸ ︷
H|0〉⊗H|0〉⊗ ...⊗H|0〉⊗H|1〉 (7)

we have, for quantum gates and their theory,

|ψ1〉= ∑
x∈{0,1}N

|x〉√
2N

[
|0〉− |1〉√

2

]
. (8)

Next, the function f is evaluated using

U f |x,y〉= |x,y⊕ f (x)〉 (9)

in giving

|ψ2〉= (−1) f (x)|ψ1〉. (10)

Here y⊕ f (x) is the bitwise XOR (exclusive OR) of y and

f (x). By checking the cases x1 = 0 and x1 = 1 separately, we

see that for a single qubit

H|x1〉= ∑
z1

(−1)x1z1 |z1〉/
√

2. (11)

Thus we have

H⊗N |x1, . . . ,xN〉

=
∑z1,...,zN (−1){x1z1+···+xN zN}(mod2)|z1, . . . ,zN〉√

2N
.

(12)

Here, xz is in modulo 2. This can be summarized more suc-

cinctly in the very useful equation

H⊗N |x〉= ∑z(−1)x�z|z〉√
2N

(13)

where x · z is the bitwise inner product of x and z, modulo

2. Using the equation (10) and (13), we can now evaluate

H⊗N |ψ2〉= |ψ3〉

|ψ3〉= ∑
z

∑
x

(−1)x�z+ f (x)|z〉
2N

[
|0〉− |1〉√

2

]
. (14)

Thus we have

|ψ3〉= ∑
z

∑
x

(−1)x�z+g(a)�x|z〉
2N

[
|0〉− |1〉√

2

]
. (15)

We can see that

∑
x
(−1)x�z+g(a)�x = 2N

δg(a),z. (16)
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Therefore, the sum is zero if z 6= g(a) and is 2N if z = g(a).

Thus we have

|ψ3〉= ∑
z

∑
x

(−1)x�z+g(a)�x|z〉
2N

[
|0〉− |1〉√

2

]
= ∑

z

2Nδg(a),z|z〉
2N

[
|0〉− |1〉√

2

]
= |(g(a1),g(a2), · · · ,g(aN))〉

[
|0〉− |1〉√

2

]
(17)

from which

|(g(a1),g(a2), · · · ,g(aN))〉 (18)

can be obtained. That is to say, if we measure

|(g(a1),g(a2), · · · ,g(aN))〉 then we can retrieve the following

values (as a bit string)

g(a1),g(a2),g(a3), . . . ,g(aN) (19)

using a single query.

III. EXTENSION TO A NATURAL NUMBER STRING

Let us discuss the Bernstein-Vazirani algorithm of deter-

mining a natural number string. The detail calculations of the

section can be seen in Ref. [19].

We suppose that the following sequence of complex num-

bers is given

a1,a2,a3, . . . ,aN . (20)

We introduce a special function

g : C→{0,1,2,3, ...,d−1}. (21)

Our aim is to determine the values below as a string of natural

numbers,

g(a1),g(a2),g(a3), . . . ,g(aN). (22)

Recall that in the best classical case, we need N queries, that

is, N separate evaluations of the function (21). In case of the

generalized Bernstein-Vazirani algorithm, we shall require a

single query.

We introduce a positive integer d. Throughout the discus-

sion, we consider the problem in modulo d. Assume the fol-

lowing

0≤
N︷ ︸︸ ︷

g(a1),g(a2),g(a3), . . . ,g(aN)≤ d−1, (23)

where g(a j) ∈ {0,1, ...,d−1}, and we define

g(a) = (g(a1),g(a2),g(a3), . . . ,g(aN)), (24)

where each entry of g(a) is a natural number. Here g(a) ∈

{0,1, ...,d−1}N . We define f (x) as follows:

f (x) = (g(a) · x) mod d ≡ g(a)� x

= {g(a1)x1 +g(a2)x2 + · · ·+g(aN)xN} mod d, (25)

where x = (x1, ...,xN) ∈ {0,1, ...,d− 1}N . Let us follow the

quantum states through the algorithm.

The input state is

|ψ0〉= |0〉⊗N |d−1〉, (26)

where |0〉⊗N means

N︷ ︸︸ ︷
|0,0, ...,0〉. Here |0〉 and |d−1〉 are quan-

tum states in a d-dimensional space. We discuss the Fourier

transform of |0〉

|0〉 →
d−1

∑
y=0

|y〉√
d
. (27)

We define a quantum state in a d-dimensional space |φ〉 as

follows:

|φ〉= 1√
d
(ωd |0〉+ω

d−1|1〉+ · · ·+ω|d−1〉), (28)

where ω = e2πi/d . In the following, we discuss the Fourier

transform of |d−1〉

|d−1〉 → |φ〉. (29)

The Fourier transform of |x1...xN〉 is as follows:

|x1...xN〉 → ∑
z∈K

ωz�x|z〉√
dN

, (30)

where K = {0,1, ...,d−1}N and z is (z1,z2, ...,zN). Here, for

completeness, ∑z∈K is a shorthand to the compound sum

∑
z1∈{0,1,...,d−1}

· · · ∑
zN∈{0,1,...,d−1}

. (31)
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After the componentwise Fourier transforms of the first N

quantum states in a d-dimensional space and after the Fourier

transform of the quantum state in a d-dimensional space

|d−1〉 in (26)

N︷ ︸︸ ︷
F |0〉⊗F |0〉⊗ ...⊗F |0〉⊗F |d−1〉, (32)

we have, for quantum gates and their theory,

|ψ1〉= ∑
x∈K

|x〉√
dN
|φ〉. (33)

Here, the notation F |0〉means the Fourier transform of |0〉 and

the notation F |d−1〉 means the Fourier transform of |d−1〉.

We introduce O f (x) gate

O f (x)|x〉| j〉= |x〉|( f (x)+ j) mod d〉, (34)

where

f (x) = g(a) · x mod d = g(a)� x. (35)

We have the following formula by phase kick-back

O f (x)|x〉|φ〉= ω
f (x)|x〉|φ〉. (36)

We have |ψ2〉, by operating O f (x) to |ψ1〉,

O f (x)|ψ1〉= |ψ2〉= ∑
x∈K

ω f (x)|x〉√
dN
|φ〉. (37)

After the Fourier transform of |x〉, using the previous equa-

tions (30) and (37), we can now evaluate |ψ3〉 as follows:

|ψ3〉= ∑
z∈K

∑
x∈K

(ω)x�z+g(a)�x|z〉
dN |φ〉. (38)

Notice

∑
x∈K

(ω)x�(z+g(a)) = dN
δz,~d−g(a), (39)

where ~d =

N︷ ︸︸ ︷
(d,d, ...,d). Therefore, the above summation is

zero if z 6= ~d − g(a) and the above summation is dN if z =
~d−g(a). Thus we have

|ψ3〉= ∑
z∈K

dNδz,~d−g(a)|z〉
dN |φ〉

= |~d− (g(a1),g(a2),g(a3), . . . ,g(aN))〉|φ〉 (40)

from which

|~d− (g(a1),g(a2),g(a3), . . . ,g(aN))〉 (41)

can be obtained. That is to say, if we measure the first N

quantum states in a d-dimensional space of the state |ψ3〉, that

is, |~d− (g(a1),g(a2),g(a3), . . . ,g(aN))〉, then we can retrieve

the following values (as a natural number string)

g(a1),g(a2),g(a3), . . . ,g(aN) (42)

using a single query.

IV. EXTENSION TO AN INTEGER STRING

We present an algorithm of determining the values of a

function that are extended to integers. That is, the extended al-

gorithm determines an integer string instead of a natural num-

ber string. This is a different point. Here, we use the general

non-unitary transform instead of the Fourier transform. The

transform is a straightforward generalization of the Fourier

transform. The detail calculations of the section can be seen

in Ref. [19].

We suppose that the following sequence of complex num-

bers is given

a1,a2,a3, . . . ,aN . (43)

We introduce a special function

g : C→{−(d−1), ...,−2,−1,0,1,2, ...,d−1}. (44)

Our aim is to determine the values below as a string of natural

numbers,

g(a1),g(a2),g(a3), . . . ,g(aN). (45)

Recall that in the best classical case, we need N queries, that

is, N separate evaluations of the function (44). In case of the

generalized Bernstein-Vazirani algorithm, we shall require a

single query.

We introduce a positive integer d. Throughout the discus-

sion, we consider the problem in modulo d. Assume the fol-

lowing

−(d−1)≤
N︷ ︸︸ ︷

g(a1),g(a2),g(a3), . . . ,g(aN)≤ d−1,

(46)
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where g(a j)∈ {−(d−1), ...,−1,0,1, ...,d−1}, and we define

g(a) = (g(a1),g(a2),g(a3), . . . ,g(aN)), (47)

where each entry of g(a) is an integer. Here g(a) ∈ {−(d−

1), ...,−1,0,1, ...,d−1}N . We define f (x) as follows:

f (x) = (g(a) · x) mod d ≡ g(a)� x

= {g(a1)x1 +g(a2)x2 + · · ·+g(aN)xN} mod d, (48)

where x = (x1, ...,xN) ∈ {−(d − 1), ...,−1,0,1, ...,d − 1}N .

Let us follow the quantum states through the algorithm.

The input state is

|ψ0〉= |0〉⊗N |d−1〉, (49)

where |0〉⊗N means

N︷ ︸︸ ︷
|0,0, ...,0〉. Here |0〉 is a quantum state in

a (2d−1)-dimensional space and |d−1〉 is a quantum state in

a d-dimensional space. We discuss the general transform of

|0〉

|0〉 →
d−1

∑
y=−(d−1)

|y〉√
2d−1

. (50)

A calculation shows that this is not a unitary operation; (in

fact, it does not have full rank).

We define a quantum state in a d-dimensional space |φ〉 as

follows:

|φ〉= 1√
d
(ωd |0〉+ω

d−1|1〉+ · · ·+ω|d−1〉), (51)

where ω = e2πi/d . In the following, we discuss the Fourier

transform of |d−1〉

|d−1〉 → |φ〉. (52)

The general transform of |x1...xN〉 is as follows:

|x1...xN〉 → ∑
z∈K

ωz�x|z〉√
(2d−1)N

, (53)

where K = {−(d − 1), ...,−1,0,1, ...,d − 1}N and z is

(z1,z2, ...,zN). z j ∈ {−(d− 1), ...,−1,0,1, ...,d− 1}. This is

not a unitary operation. Here, for completeness, ∑z∈K is a

shorthand to the compound sum

∑
z1∈{−(d−1),...,−1,0,1,...,d−1}

· · · ∑
zN∈{−(d−1),...,−1,0,1,...,d−1}

.

(54)

After the componentwise general transforms of the first N

quantum states in a (2d− 1)-dimensional space and after the

Fourier transform of the quantum state in a d-dimensional

space |d−1〉 in (49)

N︷ ︸︸ ︷
G|0〉⊗G|0〉⊗ ...⊗G|0〉⊗F |d−1〉, (55)

we have, for quantum gates and their theory,

|ψ1〉= ∑
x∈K

|x〉√
(2d−1)N

|φ〉. (56)

Here, the notation G|0〉means the general transform of |0〉 and

the notation F |d−1〉 means the Fourier transform of |d−1〉.

We introduce O f (x) gate

O f (x)|x〉| j〉= |x〉|( f (x)+ j) mod d〉, (57)

where

f (x) = g(a) · x mod d = g(a)� x. (58)

We have the following formula by phase kick-back

O f (x)|x〉|φ〉= ω
f (x)|x〉|φ〉. (59)

We have |ψ2〉, by operating O f (x) to |ψ1〉,

O f (x)|ψ1〉= |ψ2〉= ∑
x∈K

ω f (x)|x〉√
(2d−1)N

|φ〉. (60)

After the general transform of |x〉, using the previous equa-

tions (53) and (60), we can now evaluate |ψ3〉 as follows:

|ψ3〉= ∑
z∈K

∑
x∈K

(ω)x�z+g(a)�x|z〉
(2d−1)N |φ〉. (61)

Notice

∑
x∈K

(ω)x�(z+g(a)) = (2d−1)N
δz,−g(a). (62)

Therefore, the above summation is zero if z 6= −g(a) and the

above summation is (2d−1)N if z =−g(a). Thus we have

|ψ3〉= ∑
z∈K

(2d−1)Nδz,−g(a)|z〉
(2d−1)N |φ〉

= |− (g(a1),g(a2),g(a3), . . . ,g(aN))〉|φ〉 (63)

from which

|− (g(a1),g(a2),g(a3), . . . ,g(aN))〉 (64)
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can be obtained. That is to say, if we measure the first N

quantum states in a (2d− 1)-dimensional space of the state

|ψ3〉, that is, |− (g(a1),g(a2),g(a3), . . . ,g(aN))〉, then we can

retrieve the following values (as an integer string)

g(a1),g(a2),g(a3), . . . ,g(aN) (65)

using a single query.

V. EXTENSION TO A COMPLEX NUMBER STRING

In this section, we propose a generalization of the

Bernstein-Vazirani algorithm to find out a complex number

string, in which the general continuous non-unitary transform

is utilized instead of the discrete non-unitary transform.

Suppose that the following sequence of complex numbers

is given

a1,a2,a3, . . . ,aN . (66)

A special function is provided as follows:

g : C→ C. (67)

Our final goal is for determining the following values as a

complex number string

g(a1),g(a2),g(a3), . . . ,g(aN). (68)

It is worth pointing out that in the best classical case, to deter-

mine g(a1), . . . ,g(aN), N queries are expected to be answered,

which are N separate evaluations of the function (67). How-

ever, in case of the generalized Bernstein-Vazirani algorithm,

we shall require a single query instead of N queries.

We determine the real part. Assume the following sequence

of complex numbers as follows:

a1,a2,a3, . . . ,aN . (69)

Take a special function l as follows:

l : C→ (−d,+d). (70)

Our aim is for determining the following values as the real

part of the complex number string

l(a1), l(a2), l(a3), . . . , l(aN). (71)

Recall that in the best classical case, to determine

l(a1), . . . , l(aN) as the coefficients of the linear function

f (x) = l(a1)x1 + · · ·+ l(aN)xN , we need N queries for val-

ues of f (x) in which N is separate evaluations of the function

(70). Using the generalized Bernstein-Vazirani algorithm, we

require just a single query.

Considering a positive integer as d, the problem is dis-

cussed in modulo d:

−d <

N︷ ︸︸ ︷
l(a1), l(a2), l(a3), . . . , l(aN)< d, (72)

where l(a j) ∈ (−d,+d), and l(a) is as follows:

l(a) = (l(a1), l(a2), l(a3), . . . , l(aN)), (73)

where each entry of l(a) is a real number, and l(a) ∈

(−d,+d)N . We define f (x) as follows:

f (x) = (l(a) · x) mod d ≡ l(a)� x

= {l(a1)x1 + l(a2)x2 + · · ·+ l(aN)xN} mod d, (74)

where x = (x1, ...,xN) ∈ (−d,+d)N . Let us follow the quan-

tum states through the algorithm.

The input state is

|ψ0〉= |0〉⊗N |φ〉, (75)

where |0〉⊗N means

N︷ ︸︸ ︷
|0,0, ...,0〉. Here N <∞ that is N is a finite

natural number. This is defined as follows:

|φ〉= ∑
j∈[0,+d)

ωd− j| j〉√
d

(76)

where ω = e2πi/d .

The general transform of |0〉 is as follows:

|0〉 → ∑
y∈(−d,+d)

|y〉√
2d

. (77)

A calculation shows that this is not a unitary operation. In-

deed, it does not have a full rank.

The general transform of |x1...xN〉 is as follows:

|x1...xN〉 → ∑
z∈K

ωz�x|z〉√
(2d)N

, (78)

where K = (−d,d)N and z is (z1,z2, ...,zN). z j ∈ (−d,+d).

This is not a unitary operation. Here, for completeness, ∑z∈K
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is written in shorthand to a compound sum as:

∑
z1∈(−d,+d)

· · · ∑
zN∈(−d,+d)

. (79)

After the componentwise general transforms of the first N

quantum states in an infinite-dimensional space in (75)

N︷ ︸︸ ︷
G|0〉⊗G|0〉⊗ ...⊗G|0〉⊗|φ〉, (80)

we have, for quantum gates and their theory,

|ψ1〉= ∑
x∈K

|x〉√
(2d)N

|φ〉. (81)

Here, the notation G|0〉 means the general transform of |0〉. It

is a straightforward generalization of the Fourier transform.

We introduce O f (x) gate

O f (x)|x〉| j〉= |x〉|( f (x)+ j) mod d〉, (82)

where

f (x) = (l(a) · x) mod d = l(a)� x. (83)

We have the following formula by phase kick-back

O f (x)|x〉|φ〉= ω
f (x)|x〉|φ〉. (84)

In what follows, we discuss the rationale behind of the above

relation (84). Now consider the action of the O f (x) gate to the

state |x〉|φ〉. Each term in |φ〉 is of the form ωd− j| j〉. We see

O f (x)ω
d− j|x〉| j〉

= ω
d− j|x〉|( j+ f (x)) mod d〉. (85)

k is introduced such as f (x)+ j = k then d− j = d+ f (x)−k.

Consequently, (85) becomes

O f (x)ω
d− j|x〉| j〉

= ω
f (x)

ω
d−k|x〉|k mod d〉. (86)

Now, when k < d, we have |k mod d〉= |k〉 and thus, the terms

in |φ〉 such that k < d are transformed as follows:

O f (x)ω
d− j|x〉| j〉= ω

f (x)
ω

d−k|x〉|k〉. (87)

Furthermore, as f (x) and j are both bounded above by d, k

is strictly less than 2d. Thus, when d ≤ k < 2d, we have

|k mod d〉 = |k− d〉. Now, introducing m as k− d = m, we

have

ω
f (x)

ω
d−k|x〉|k mod d〉= ω

f (x)
ω
−m|x〉|m〉

= ω
f (x)

ω
d−m|x〉|m〉. (88)

Hence, the terms in |φ〉 such that k ≥ d are transformed as

follows:

O f (x)ω
d− j|x〉| j〉= ω

f (x)
ω

d−m|x〉|m〉. (89)

Subsequently, regarding (87) and (89), we have

O f (x)|x〉|φ〉= ω
f (x)|x〉|φ〉. (90)

Therefore, the relation (84) holds. Operating O f (x) to |ψ1〉,

|ψ2〉 is transformed as:

O f (x)|ψ1〉= |ψ2〉= ∑
x∈K

ω f (x)|x〉√
(2d)N

|φ〉. (91)

After the general transform of |x〉, using the previous equa-

tions (78) and (91), |ψ3〉 can be evaluated as follows:

|ψ3〉= ∑
z∈K

∑
x∈K

(ω)x�z+l(a)�x|z〉
(2d)N |φ〉. (92)

Notice

∑
x∈K

(ω)x�(z+l(a)) = (2d)N
δz,−l(a). (93)

Therefore, the above sum is zero if z 6= −l(a) and the above

sum is (2d)N if z =−l(a). So, we have

|ψ3〉= ∑
z∈K

(2d)Nδz,−l(a)|z〉
(2d)N |φ〉

= |− (l(a1), l(a2), l(a3), . . . , l(aN))〉|φ〉 (94)

from which

|− (l(a1), l(a2), l(a3), . . . , l(aN))〉 (95)

can be obtained. That is to say, if we measure the first N quan-

tum states in an infinite-dimensional space of the state |ψ3〉,

that is, |−(l(a1), l(a2), l(a3), . . . , l(aN))〉, then we can retrieve

the following values as the real part of a complex number

strings

l(a1), l(a2), l(a3), . . . , l(aN) (96)

using a single query.
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Next, we determine the imaginary part. We suppose that

the following sequence of complex numbers is given

a1,a2,a3, . . . ,aN . (97)

We introduce a special function

h : C→ (−d,+d). (98)

Our aim is to determine the following values as the imaginary

part of a complex number string,

h(a1),h(a2),h(a3), . . . ,h(aN). (99)

Recall that in the best classical case, to determine

h(a1), . . . ,h(aN), we need N queries, that is, N separate eval-

uations of the function (98). In case of the generalized

Bernstein-Vazirani algorithm, we shall require a single query.

Finally, the two evaluations (the real part and the imagi-

nary part) can be performed, in parallel computing method,

simultaneously. In the final step, we measure the following

quantum state:

|− (l(a1), l(a2), l(a3), . . . , l(aN))〉⊗

|− (h(a1),h(a2),h(a3), . . . ,h(aN))〉. (100)

That is, we determine the N complex values g(a j) = l(a j)+

ih(a j) simultaneously. The speed of determining the string of

complex numbers is shown to outperform the best classical

case by a factor of N.

VI. EXTENSION TO A MATRIX STRING

We propose a method for calculating many different ma-

trices A,B,C, ... into g(A),g(B),g(C), ... simultaneously. That

is, the generalized Bernstein-Vazirani algorithm determines a

matrix string instead of a number string. The speed of solv-

ing the problem is shown to outperform the classical case by

a factor of the number of the elements of them.

Let the jth matrix be a N j ×M j matrix (N j rows, M j

columns, and j = 1,2,3, ...). To simplify, let us consider

the case of two matrices ( j = 2). Given the elements of

the matrices a1,a2,a3, . . . ,aN1×M1 ,b1,b2,b3, . . . ,bN2×M2 , and

a special function g newly, we calculate O(N1×M1 +N2×

M2) values of the function g(a1),g(a2),g(a3), . . . ,g(aN1×M1),

g(b1),g(b2),g(b3), . . . ,g(bN2×M2) simultaneously. In the clas-

sical case, we have to evaluate each O(N1×M1 +N2×M2)

values.

However, in the quantum case, we need just a query. Thus,

the speed of calculating the two matrices is shown to outper-

form the classical case by a factor of O(N1×M1 +N2×M2).

The generalization of it, to many matrices, can be done in

a straightforward manner. The most significant result of the

section is that it can be better than its classical counterpart

regarding time complexity. The speed of calculating the dif-

ferent matrices is shown to outperform the classical case by a

factor of O(N1×M1 +N2×M2 +N3×M3 + ...).

Let us consider the case of a single N ×M matrix A (N

rows and M columns). Given the elements of the matrix

a1,a2,a3, . . . ,aN×M , and a special function g newly, we can

obtain the following values (as a complex number string)

g(a1),g(a2),g(a3), . . . ,g(aN×M) (101)

using a single query. This is the most significant point of

our method and it is possible by the generalized Bernstein-

Vazirani algorithm. We consider them as the elements of the

matrix g(A);

g(A) =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm

 , (102)

where (g(a1),g(a2),g(a3), . . . ,g(aN×M)) = (a11,a21, ...,anm).

Therefore, we obtain g(A) by a single query. In the classical

case, we obtain g(A) by O(N×M) queries. Thus, the speed of

calculating the matrix g(A) is shown to outperform the classi-

cal case by a factor of O(N×M).

Let us consider the case of two matrices A and B (N j rows,

M j columns, and j = 1,2). Given the elements of the matri-

ces a1,a2,a3, . . . ,aN1×M1 ,b1,b2,b3, . . . ,bN2×M2 , and a special

function g newly, we can obtain the following values (as a



10

complex number string)

g(a1),g(a2),g(a3), . . . ,g(aN1×M1),

g(b1),g(b2),g(b3), . . . ,g(bN2×M2), (103)

using a single query. Again it is possible by the generalized

Bernstein-Vazirani algorithm. We consider them as the ele-

ments of the matrices g(A) and g(B);

g(A) =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm

 , (104)

and

g(B) =


b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
...

bn1 bn2 . . . bnm

 , (105)

where (g(a1),g(a2),g(a3), . . . ,g(aN1×M1)) =

(a11,a21, ...,anm). (g(b1),g(b2),g(b3), . . . ,g(bN2×M2)) =

(b11,b21, ...,bnm). Therefore, we obtain g(A) and g(B) by

a single query. In the classical case, we obtain g(A) and

g(B) by O(N1×M1 +N2×M2) queries. Thus, the speed of

calculating the matrix g(A) and g(B) is shown to outperform

the classical case by a factor of O(N1×M1 +N2×M2).

The generalization of it, to many matrices, can be done in a

straightforward manner. The speed of calculating the matrices

is shown to outperform the classical case by a factor of O(N1×

M1 +N2×M2 +N3×M3 + ...).

In what follows, we give an example in the case of three

matrices. Let g(x) be x2. Let A,B,C be

A =

0 2

1 3

 ,B =

4 6

5 7

 ,C =

8 10

9 11

 . (106)

The elements are
A︷ ︸︸ ︷

0,1,2,3,

B︷ ︸︸ ︷
4,5,6,7,

C︷ ︸︸ ︷
8,9,10,11 . (107)

In the classical case, we have to evaluate the following values

separately

g(0),g(1),g(2),g(3),g(4),g(5),

g(6),g(7),g(8),g(9),g(10),g(11). (108)

In the quantum case, from the generalized Bernstein-Vazirani

algorithm, using g, we have

g(A)︷ ︸︸ ︷
0,1,4,9,

g(B)︷ ︸︸ ︷
16,25,36,49,

g(C)︷ ︸︸ ︷
64,81,100,121 (109)

using a single query. Hence we have

g(A) =

0 4

1 9

 ,g(B) =

16 36

25 49

 ,

g(C) =

64 100

81 121

 , (110)

using a single query. The speed of calculating the matrices

is shown to outperform the classical case by a factor of 12;

(2×2+2×2+2×2 = 12).

Now, we generalize the Bernstein-Vazirani algorithm from

a bit string into a matrix string. Let us suppose that the fol-

lowing sequence of matrices is given

A1,A2,A3, . . . ,AN . (111)

Let us now introduce a special function newly

g : C→ C. (112)

Our goal is for determining the following matrices (as a matrix

string)

g(A1),g(A2),g(A3), . . . ,g(AN). (113)

In the generalized Bernstein-Vazirani algorithm, we shall re-

quire a single query. We hope our discussions will give a way

to the quantum simulation problem.

VII. CONCLUSIONS

In conclusion, we have presented various new forms of the

Bernstein-Vazirani algorithm beyond qubit systems. First, we

have reviewed the Bernstein-Vazirani algorithm for determin-

ing a bit string. The algorithm has had the feature of the

Hadamard transform of a quantum state in a two-dimensional

space to solve the problem of finding a bit string.

Second, we have discussed the generalized Bernstein-

Vazirani algorithm for determining a natural number string.
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The generalized algorithm presented here has had the feature

of the normal Fourier transform of a quantum state in a finite-

dimensional space to solve the problem of finding a string of

natural numbers.

Thirdly, we have discussed the generalized Bernstein-

Vazirani algorithm for determining an integer string. The

generalized algorithm presented here has had the feature of

a general discrete non-unitary transform of a quantum state in

a finite-dimensional space to solve the problem of finding a

string of integers.

Finally, we have discussed the generalized Bernstein-

Vazirani algorithm for determining a complex number string.

The generalized algorithm presented here has had the feature

of a general continuous non-unitary transform of a quantum

state in an infinite-dimensional space to solve the problem of

finding a string of complex numbers.

All of the generalized algorithms presented here have had

the following structure. Given the set of complex numbers

{a1,a2,a3, . . . ,aN} and a special function g, we have deter-

mined N values of the function g(a1),g(a2),g(a3), . . . ,g(aN)

simultaneously. The speed of determining the strings has been

shown to outperform the best classical case by a factor of N in

every cases.

Additionally, we have proposed a method for calculating

many different matrices A,B,C, ... into g(A),g(B),g(C), ... si-

multaneously. The speed of solving the problem has been

shown to outperform the classical case by a factor of the num-

ber of the elements of them.

We are working a lot for the Bernstein-Vazirani algorithm.

We also suggest we should discuss about implementation. An

optical implementation of Bernstein-Vazirani string finding

algorithm is the interested [21].
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