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The object of the present paper is to study the class of almost contact metric manifolds and also investigated
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I. INTRODUCTION

In 1959, an odd-dimensional manifold M2n+1, Gray [4]

defined an almost contact structure as a structural group to

U(n)× 1. The structure tensor M2n+1, has an almost contact

structure or sometimes (φ ,ξ ,η)-structure if it admits a tensor

field φ of type (1,1), a vector field ξ , and a 1-form η satisfy-

ing

φ
2 =−I +η⊗ξ , η(ξ ) = 1, (1)

φ(ξ ) = 0, η ◦φ = 0. (2)

If a manifold M2n+1 with a (φ ,ξ ,η)-structure admits a Rie-

mannian metric g such that

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (3)

then M2n+1 has an almost contact metric structure and g is

called a compatible metric. Setting Y = ξ in (3), we conclude

that

η(X) = g(X ,ξ ). (4)

In 1972, a special almost contact metric structure intro-

duced by Kenmotsu [7] seems to play a role here. An almost

contact metric manifold (M,φ ,ξ ,η ,g) is called a Kenmotsu

manifold if it satisfies

(∇X φ)Y = g(φX ,Y )ξ −η(Y )φX , (5)

where ∇ denotes the Riemannian connection or Levi-Civita

connection of g. Kenmotsu gave a local characterization of

this structure.

In 1980, the classification of Gray and Hervella [5] of al-

most Hermitian manifolds there appears a class W4, of Her-

mitian manifolds which are closely related to locally confor-

mally Kähler manifolds. If we consider M1×R with the al-

most complex structure

J(X , f
d
dt
) = (φX− f ξ ,η(X)

d
dt
),

where f is a real valued function , is integrable then the struc-

ture is said to be Sasakian.

In 1985, Oubina [11] introduced the notion of a trans-

Sasakian structure as an almost contact metric structure

(φ ,ξ ,η ,g) for which the almost Hermitian manifold (M1×

R,J,G) belongs to the class W4, where G denotes the product

metric. This may be expressed by the condition

(∇X φ)Y =α(g(X ,Y )ξ−η(Y )X)+β (g(φX ,Y )ξ−η(Y )φX),

for function α and β on M and the trans-Sasakian structure

is said to be of type (α,β ). If β but not α (α but not β ) van-

ishes, the structure is α-Sasakian (resp.β -Sasakian) [6]. In
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1992, Marrero [9] showed that a trans-Sasakian manifold of

dimension ≥ 5 is either α-Sasakian, β -Sasakian or cosym-

plectic.

An almost contact metric structure (φ ,ξ ,η ,g) on M2n+1 is

called a contact metric structure (φ ,ξ ,η ,g) if it satisfies [2]

dη(X ,Y )=
1
2
[(∇X η)(Y )−(∇Y η)(X)]= g(X ,φY )=Φ(X ,Y ),

(6)

where Φ denotes the fundamental 2-form of the almost

contact metric structure. A manifold M2n+1 with a contact

metric structure (φ ,ξ ,η ,g) is said to be a contact metric

manifold. Moreover, ∇X ξ = −φX − φhX , ∇ξ ξ = 0, where

h denotes a (1,1) type tensor h by h = 1
2 £ξ φ (£ means the Lie

differentiation). A contact metric manifold (M2n+1,φ ,ξ ,η ,g)

for which ξ is a killing vector is called a K-contact metric

manifold. It is well-known that a contact metric manifold is

K-contact if and only if h = 0.

In this paper we study the special type of an almost con-

tact metric structure. The paper is organized as follows: After

introduction in section 2, from the definition by means of the

tensor equations it is easily verified that the structure is a con-

tact metric manifold, but ξ is not a killing vector field and we

construct an example to verify this special type of the almost

contact metric structure. The curvature tensor, the Ricci ten-

sor and some properties of this structure with an example have

been studied in Section 3. Section 4 is devoted to a study of

η-Einstein manifolds. Finally, we have discussed the Concir-

cular curvature tensor on this almost contact metric structure.

II. DEFINITION AND EXAMPLE

Let us consider a class of almost contact metric manifolds

which satisfy the following conditions

(∇X φ)(Y ) =−η(Y )X−η(Y )hX−η(Y )φX

+g(X ,Y )ξ +g(hX ,Y )ξ +g(φX ,Y )ξ , (7)

∇X ξ = X−φX−φhX−η(X)ξ . (8)

In 1969, Eum [3] studied the integrability of invariant hy-

persurfaces immersed in an almost contact metric manifold

which satisfies

g((∇X φ)Y,Z) = (∇X η)(η(Y )φZ−η(Z)φY ). (9)

If we assume (8) on the almost contact metric manifold,

then (7) is equivalent to (9) and we write that

(∇X η)Y = g(X ,Y )−g(φX ,Y )−g(φhX ,Y )−η(X)η(Y ).

(10)

Combining (6), (10), we conclude that the class of almost

contact metric manifolds which satisfy the equations (7) and

(8) is a class of the contact metric manifolds. The author has

been preferred the name of this contact metric manifold as a

Barman manifold.

Taking the Lie differentiation of g with respect to ξ and

using (3) and (8), we see that

(£ξ g)(X ,Y ) = 2g(X ,φY ) 6= 0.

Therefore, ξ is not a killing vector field.

Summing up all of the above discussion we can state the

following proposition:

Proposition II.1. If a class of almost contact metric

manifolds which the M2n+1, which satisfy the condition

(∇X φ)(Y ) = −η(Y )X − η(Y )hX − η(Y )φX + g(X ,Y )ξ +

g(hX ,Y )ξ +g(φX ,Y )ξ and ∇X ξ = X−φX−φhX−η(X)ξ ,

then

(i) M2n+1 is the integrability of invariant hypersurfaces im-

mersed due to Eum [3],

(ii) (∇X η)Y = g(X ,Y )−g(φX ,Y )−g(φhX ,Y )−η(X)η(Y ),

(iii) ξ is not a killing vector field on M2n+1.

Taking the covariant derivative of h and φh, we get
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Proposition II.2. Under the same assumption as Proposition

II.1

(∇X h)Y =−η(Y )hX +η(Y )hφX−η(Y )h2
φX

−g(X ,φhY )ξ −g(X ,hY )ξ −g(h2X ,Y )ξ . (11)

(∇X φh)Y =−η(Y )φhX +η(Y )hX +η(Y )h2X

+g(X ,hY )ξ +g(φX ,hY )ξ +g(h2X ,Y )ξ . (12)

Since the proof of Proposition III.2 follows by a routine

calculation, we shall omit it.

Example II.1. We begin with a result of Tashiro [13] that

every C∞ orientable hypersurface of an almost complex

manifold has an almost contact structure.

Let (M̃2n+2,J) be an almost complex manifold and

ι : M2n+1 −→ M̃2n+2 a C∞ orientable hypersurface. There

exists a transverse vector field ν along M2n+1 such that Jν

is tangent. For if Jι∗X is tangent for every tangent vector

X , Jι∗X = ι∗ f X defines a (1,1)-tensor field f on M2n+1.

Applying J, we have f 2 = −I on M2n+1, making M2n+1 an

almost complex manifold, a contradiction. Thus there ex-

ists a vector field ξ on M2n+1 such that ν = Jι∗ξ is transverse.

Define a tensor field φ of type (1, 1) and a 1-form η on

M2n+1 by

Jι∗X = ι∗φX +η(X)ν ; (13)

then applying J, we have

−ι∗X = ι∗φ
2X +η(φX)ν−η(X)ι∗ξ

and hence φ 2 = −I +η ⊗ ξ and η ◦φ = 0. Taking X = ξ in

equation (13) gives ν = ι∗φξ +η(ξ )ν and hence φξ = 0 and

η(ξ ) = 1. Therefore (φ ,η ,ξ ) is an almost contact structure

on M2n+1.

The Gauss-Weingarten equations, we obtain

(∇̃X J)ξ = ∇̃X ν− J(∇X ξ +σ(X ,ξ )) = 0,

where σ(X ,Y ) = − 1
r g(X ,Y )ν denotes the second fundamen-

tal form and r be a sphere of radius.

The above equation implies that

0 = (∇̃X J)ξ =
1
r

X−φ∇X ξ − 1
r

η(X)ξ +
1
r

φX +
1
r

hX .

Applying φ , we have ∇X ξ = 1
r (X−φX−φhX−η(X)ξ ). This

in turn yields

dη(X ,Y ) =
1
2
(g(∇X ξ ,Y )−g(∇Y ξ ,X)) =

1
r

g(X ,φY ).

Thus for r 6= 1, g is not an associated metric, but this situation

is easily rectified. The structure η̄ = 1
r η , ξ̄ = rξ , η̄ = 1

r η ,

φ̄ = φ , h̄ = h and ḡ = 1
r2 g is the new contact metric structure

(Barman manifold).

III. CURVATURE TENSOR AND RICCI TENSOR

Analogous to the definitions of the curvature tensor R of M

with respect to the Levi-Civita connection ∇,

R(X ,Y )ξ = ∇X ∇Y ξ −∇Y ∇X ξ −∇[X ,Y ]ξ , (14)

where X ,Y ∈ χ(M), the set of all differentiable vector

fields on M.

Now using (4), (7), (8), (10) and (12) in (14), we obtain

R(X ,Y )ξ = η(Y )X +η(Y )φX−η(Y )hφX−η(Y )h2X

−η(X)Y −η(X)φY +η(X)hφY +η(X)h2Y. (15)

We state the following proposition of Blair [2] which will

be used to determined the value of h2 :

Proposition III.1. [2] On a contact metric manifold M2n+1,

we have the following formulas:

(∇ξ h)(X) = φX−h2
φX−φR(X ,ξ )ξ

and

1
2
[(R(ξ ,X)ξ −φ(R(ξ ,φX)ξ ] = h2X +φ

2X .
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Combining (1), (2), (12), (15) and Proposition III.1, we de-

cided that

h2X = X−η(X)ξ , g(hX ,hY ) = g(X ,Y )−η(X)η(Y ). (16)

From (15) and (16), we derived that

R(X ,Y )ξ = η(Y )φX−η(Y )hφX−η(X)φY +η(X)hφY. (17)

Putting X = ξ in (17), we see that

R(ξ ,Y )ξ =−φY +hφY. (18)

In view of (17), implies that

η(R(X ,Y )Z) = η(Y )g(hφX ,Z)−η(Y )g(φX ,Z)

+η(X)g(φY,Z)−η(X)g(hφY,Z).

Combining (1), (2), (3) and (4), we have decided that

g(φX ,Y ) =−g(X ,φY ).

Putting X = Y = ei; i = 1,2,3, ...,2n+1 in the above equa-

tion, then we conclude that

g(φei,ei) = 0. (19)

Corollary III.1. [2] On a contact metric manifold M2n+1, the

relation dη = 0 holds.

By the Corollary III.1, we see

0 = dη =−divξ =−Σ
2n+1
i=1 g(∇eiξ ,ei). (20)

From the equations (8) and (20), we get

Σ
2n+1
i=1 g(ei,ei)−Σ

2n+1
i=1 g(φei,ei)−Σ

2n+1
i=1 g(φhei,ei)

−Σ
2n+1
i=1 η(ei)g(ei,ξ ) = 0. (21)

In virtue of (19) and (21), it implies that

α = g(φhei,ei) = 2n. (22)

The above discussion help us to state the following theo-

rem:

Theorem III.1. Any contact metric manifold α = g(φhei,ei)

is equal to zero, but the new contact metric manifolds (Barman

manifolds) α = g(φhei,ei) is equal to 2n.

Now contraction X from (17) and using (22), it can be easily

seen that

S(X ,ξ ) = 2nη(X), (23)

where S be the Ricci tensor of M.

Therefore, considering all the cases we can state the follow-

ing proposition:

Proposition III.2. Under the same assumption as Proposi-

tion II.1

(i) R(X ,Y )ξ = η(Y )φX−η(Y )hφX−η(X)φY +η(X)hφY,

(ii) R(ξ ,Y )ξ =−φY +hφY,

(iii) η(R(X ,Y )Z) = η(Y )g(hφX ,Z) − η(Y )g(φX ,Z) +

η(X)g(φY,Z)−η(X)g(hφY,Z),

(iv) S(X ,ξ ) = 2nη(X).

Example III.1. We consider the 5-dimensional manifold M =

{(x,y,z,u,v) ∈ R5}, where (x,y,z,u,v) are the standard coor-

dinate in R5.

We choose the vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = e−v ∂

∂ z
, e4 = e−v ∂

∂u
, e5 =

∂

∂v
,

which are linearly independent at each point of M.

Let g be the Riemannian metric defined by

g(ei,e j) = 0, i 6= j, i, j = 1,2,3,4,5

and

g(e1,e1) = g(e2,e2) = g(e3,e3) = g(e4,e4) = g(e5,e5) = 1.
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Let η be the 1-form defined by η(Z) = g(Z,e5), for any

Z ∈M2n+1.

Let φ and h are tensor field defined by

φe1 = e2, φe2 =−e1, φe3 = e4, φe4 =−e3, φe5 = 0

and

he1 =−e1, he2 =−e2, he3 =−e3, he4 =−e4, he5 = 0.

Using the linearity of φ , h and g, we have η(e5) = 1,

φ 2(Z) = −Z + η(Z)e5, g(φZ,φU) = g(Z,U) + η(Z)η(U),

h2Z = Z−η(Z)e5 and g(hZ,hU) = g(Z,U)−η(Z)η(U), for

any U,Z ∈M2n+1. Thus, for e5 = ξ , M(φ ,ξ ,η ,g) defines an

almost contact metric manifold.

Then we have

[e1,e2] = [e1,e3] = [e1,e4] = [e1,e5] = [e2,e3] = 0,

[e4,e5] = e4, [e2,e4] = [e2,e5] = [e3,e4] = 0, [e3,e5] = e3.

The Riemannian connection ∇ of the metric tensor g is

given by Koszul’s formula which is given by

2g(∇XY,Z) = Xg(Y,Z)+Y g(X ,Z)−Zg(X ,Y )−g(X , [Y,Z])

+g(Y, [X ,Z])+g(Z, [X ,Y ]).

Taking e5 = ξ and using Koszul’s formula we get the fol-

lowing

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = 0,

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = 0,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0, ∇e3e4 = 0, ∇e3e5 = e3,

∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0, ∇e4e5 = e4,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 =−e3, ∇e5e4 =−e4, ∇e5e5 = 0.

In view of the above relations, we see that ∇X ξ = X −

φX − φhX −η(X)ξ and (∇X φ)(Y ) = −η(Y )X −η(Y )hX −

η(Y )φX +g(X ,Y )ξ +g(hX ,Y )ξ +g(φX ,Y )ξ , for all e5 = ξ .

Therefore the manifold is another special type almost con-

tact metric manifold (Barman manifold) with the structure

(φ ,ξ ,η ,g).

IV. η-EINSTEIN MANIFOLD

Definition IV.1. In an almost contact metric manifold, if the

Ricci tensor (S) satisfies

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y ), (24)

where a and b are scalar functions, then the manifold is called

an η-Einstein manifold.

Putting Y = ξ in (24) and using (1) and (4), we derived that

S(X ,ξ ) = (a+b)η(X). (25)

Making from (23) and (25), we calculate that

a+b = 2n.

This leads to the following theorem:

Theorem IV.1. Any contact metric manifold M2n+1 is an η-

Einstein manifold, for a+b= 2n. Similarly, if the new contact

metric manifold (Barman manifold) under the assumption as

the (7) and (8) is also η-Einstein manifold,then we get a+b=

2n.

V. CONCIRCULAR CURVATURE TENSOR

A transformation of an 2n + 1-dimensional Riemannian

manifold M, which transforms every geodesic circle of M into

a geodesic circle, is called a concircular transformation ([8],

[14] ). A concircular transformation is always a conformal
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transformation [8]. Here geodesic circle means a curve in M

whose first curvature is constant and whose second curvature

is identically zero. Thus the geometry of concircular transfor-

mations, i.e., the concircular geometry, is a generalization of

inversive geometry in the sense that the change of metric is

more general than that induced by a circle preserving diffeo-

morphism (see also [1]). An interesing invariant of a concir-

cular transformation is the concircular curvature tensor W. It

is defined by ([14], [15])

W(X ,Y )Z = R(X ,Y )Z− r
2n(2n+1)

[g(Y,Z)X−g(X ,Z)Y ]. (26)

where X , Y , Z on M and W is the concircular curvature

tensor and r is the scalar curvature respectively. Riemannian

manifolds with vanishing concircular curvature tensor are of

constant curvature. Thus the concircular curvature tensor is

a measure of the failure of a Riemannian manifold to be of

constant curvature.

Definition V.1. A new contact metric manifolds (Barman

manifolds) is said to be ξ -concircularly flat if W(X ,Y )ξ = 0,

where X ,Y ∈ χ(M).

Putting Z = ξ in (26) and using (4) and (23), we have

W(X ,Y )ξ = R(X ,Y )ξ − r
4n2(2n+1)

[S(Y,ξ )X−S(X ,ξ )Y ].(27)

If R(X ,Y )ξ = 0, then W(X ,Y )ξ = 0.

In view of above discussions we can state the following the-

orem:

Theorem V.1. A new contact metric manifold (Barman man-

ifold) is ξ -concircularly flat if R(X ,Y )ξ vanishes.
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