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The object of the present paper is to study the class of almost contact metric manifolds and also investigated

some properties of this class.
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I. INTRODUCTION

In 1959, an odd-dimensional manifold M>"+! Gray [4]
defined an almost contact structure as a structural group to
U(n) x 1. The structure tensor M>"+! has an almost contact
structure or sometimes (¢, &, n)-structure if it admits a tensor
field ¢ of type (1,1), a vector field &, and a 1-form 7 satisfy-

ing

¢*=—-I+n®& nE) =1, (1)

¢(6)=0, no¢ =0. 2)

If a manifold M>**! with a (¢, &, n)-structure admits a Rie-

mannian metric g such that

then M?"*! has an almost contact metric structure and g is
called a compatible metric. Setting Y = € in (3), we conclude

that

nXx) =gX,8). @)

In 1972, a special almost contact metric structure intro-

duced by Kenmotsu [7] seems to play a role here. An almost

contact metric manifold (M,9,&,7n,g) is called a Kenmotsu

manifold if it satisfies

(Vx9)Y =g(¢X,Y)g —n(Y)9X, ®)

where V denotes the Riemannian connection or Levi-Civita
connection of g. Kenmotsu gave a local characterization of
this structure.

In 1980, the classification of Gray and Hervella [5] of al-
most Hermitian manifolds there appears a class %4, of Her-
mitian manifolds which are closely related to locally confor-
mally Kéhler manifolds. If we consider M| x R with the al-

most complex structure

XD = (ox - e n(x) D)
where f is a real valued function , is integrable then the struc-
ture is said to be Sasakian.

In 1985, Oubina [11] introduced the notion of a trans-
Sasakian structure as an almost contact metric structure
(¢,€,m,g) for which the almost Hermitian manifold (M; x
R,J,G) belongs to the class #4, where G denotes the product

metric. This may be expressed by the condition

(Vx9)Y = a(g(X,Y)6 —n(Y)X)+B(e(9X,Y)S —n(Y)9X),

for function & and 8 on M and the trans-Sasakian structure
is said to be of type (@, ). If B but not & (& but not ) van-

ishes, the structure is a-Sasakian (resp.f-Sasakian) [6]. In



1992, Marrero [9] showed that a trans-Sasakian manifold of
dimension > 5 is either a-Sasakian, 3-Sasakian or cosym-
plectic.

An almost contact metric structure (¢,&,7,¢) on M2+ is

called a contact metric structure (¢, &, 7, g) if it satisfies [2]

an(X.¥) = 2[(Van)(¥) — (Vy1) (X)] = 5(X.0%) = @(X.¥).
(6)

where @ denotes the fundamental 2-form of the almost
contact metric structure. A manifold M?"*! with a contact
metric structure (¢,€,1,g) is said to be a contact metric
manifold. Moreover, Vx& = —¢X — ¢hX, V¢& =0, where
h denotes a (1,1) type tensor A by i = %.fg ¢ (£ means the Lie
differentiation). A contact metric manifold (M>"*1,¢,& .7, ¢)
for which & is a killing vector is called a K-contact metric
manifold. It is well-known that a contact metric manifold is

K-contact if and only if 7 = 0.

In this paper we study the special type of an almost con-
tact metric structure. The paper is organized as follows: After
introduction in section 2, from the definition by means of the
tensor equations it is easily verified that the structure is a con-
tact metric manifold, but £ is not a killing vector field and we
construct an example to verify this special type of the almost
contact metric structure. The curvature tensor, the Ricci ten-
sor and some properties of this structure with an example have
been studied in Section 3. Section 4 is devoted to a study of
n-Einstein manifolds. Finally, we have discussed the Concir-

cular curvature tensor on this almost contact metric structure.

II. DEFINITION AND EXAMPLE

Let us consider a class of almost contact metric manifolds

which satisfy the following conditions

(Vx9)(Y)=-n¥)X —n(Y)hX —n(Y)pX
+8(X,Y)E +g(hX,Y)E +g(¢X,Y)E,  (T)

VxE =X —9X —9hX —n(X)s. ()

In 1969, Eum [3] studied the integrability of invariant hy-
persurfaces immersed in an almost contact metric manifold

which satisfies

g((Vx9)Y,2) = (Vxn)(n(Y)9Z—-n(Z)¢Y). ()

If we assume (8) on the almost contact metric manifold,

then (7) is equivalent to (9) and we write that

(Vxm)Y =g(X,Y) —g(9X,Y) —g(¢hX,Y) —n(X)n(Y).
(10)
Combining (6), (10), we conclude that the class of almost
contact metric manifolds which satisfy the equations (7) and
(8) is a class of the contact metric manifolds. The author has
been preferred the name of this contact metric manifold as a

Barman manifold.

Taking the Lie differentiation of g with respect to & and

using (3) and (8), we see that

(feg)(X,Y) =2g(X,9Y) #0.

Therefore, & is not a killing vector field.
Summing up all of the above discussion we can state the

following proposition:

Proposition II.1. If a class of almost contact metric
manifolds which the M*'', which satisfy the condition
(Vx0)(Y) = —n(¥)X — n(Y)AX — n(Y)6X + g(X, V) +
g(hX,Y)& +8(9X,Y)§ and Vx & = X — X — ohX —1(X)&,
then

(i) M*"1 s the integrability of invariant hypersurfaces im-
mersed due to Eum [3],

(i1) (V)Y = g(X,¥) — g(9X,¥) — g(0hX,¥) — n(X)n(¥),
(iii) € is not a killing vector field on M*"+1.

Taking the covariant derivative of 4 and ¢/, we get



Proposition IL.2. Under the same assumption as Proposition

111

(Vxh)Y = —n(Y)hX +n(Y)heX —n(Y)h*¢X

—g(X,0hY)E —g(X,hY)E —g(R*X,Y)E.  (11)

(Vxoh)Y = —n(Y)phX +n(Y)hX +n(Y)h*X

+g(X,hY)E +g(¢X,hY)E +g(h*X . Y)E.  (12)

Since the proof of Proposition III.2 follows by a routine

calculation, we shall omit it.

Example II.1. We begin with a result of Tashiro [13] that
every C” orientable hypersurface of an almost complex

manifold has an almost contact structure.

Let (M*"*2.J) be an almost complex manifold and
1 MPHY s NP2 g C orientable hypersurface. There
exists a transverse vector field v along M*"*' such that Jv
is tangent. For if J1.X is tangent for every tangent vector
X, JuX = 1.fX defines a (1,1)-tensor field f on M*"+1.
Applying J, we have > = —I on M*'', making M*"*! an
Thus there ex-

almost complex manifold, a contradiction.

ists a vector field & on M*'+1 such that v = J1.& is transverse.

Define a tensor field ¢ of type (1, 1) and a I-form 1 on
M2n+1 by

JLX =1.0X+n(X)v; (13)
then applying J, we have
—LX = L9°X +n(9X)V - (X)1.&

and hence ¢> = —I+N®QE and no¢ = 0. Taking X =& in
equation (13) gives v = 1,0& +n(&)v and hence $& =0 and
N (&) = 1. Therefore (¢,n,&) is an almost contact structure

on M2n+l .

The Gauss-Weingarten equations, we obtain

(VxJ)§ = Vxv—J(Vxé +0(X,8)) =0,

where 6(X,Y) = —1¢(X,Y)Vv denotes the second fundamen-
tal form and r be a sphere of radius.

The above equation implies that
~ 1 1 1 1
0=(VxJ)¢ = X PVxE — ;n(X)é + ;¢X+ ;hX.

Applying ¢, we have Vx& = 1(X —¢X — 9hX —n(X)&). This

in turn yields

AN(X,¥) = 3 (5(Vx&,Y) ~(Vy&. X)) = 18(X,07).

Thus for r # 1, g is not an associated metric, but this situation
is easily rectified. The structure 7 = }n, E=rE 7= }n,
O0=¢,h=hand g = rLZ g is the new contact metric structure

(Barman manifold).

III. CURVATURE TENSOR AND RICCI TENSOR

Analogous to the definitions of the curvature tensor R of M

with respect to the Levi-Civita connection V,

R(X,Y)E =VxVyE —VyVxE —Vxy/&, (14)

where X,Y € x(M), the set of all differentiable vector
fields on M.

Now using (4), (7), (8), (10) and (12) in (14), we obtain

R(X,Y)& = n(Y)X +n(Y)$X —n(Y)hoX —n(Y)h*X

—NX)Y —n(X)9Y +n(X)hoY +n(X)K*Y. (15)

We state the following proposition of Blair [2] which will

be used to determined the value of 42 :

Proposition ITL1. [2] On a contact metric manifold M*"+!,

we have the following formulas:

(Veh)(X) = X —h*¢X — OR(X,&)E

and

SUR(E X)E — O(R(E,0X)E] = X + 97X,



Combining (1), (2), (12), (15) and Proposition III.1, we de-
cided that

X =X —(X)&, g(hX,hY) = g(X.¥) ~ n(X)n(¥). (16)

From (15) and (16), we derived that

R(X,Y)E =n(Y)9X —n(Y)hdX —n(X)9Y +n(X)hoY. (17)

Putting X = & in (17), we see that
R(E,Y)E = —9Y +hoY. (18)
In view of (17), implies that

NR(X,Y)Z) =n(Y)g(hoX,Z) —n(Y)s(9X,Z)
‘H?(X)g(‘PYJ) - n(X>g(h¢Y’Z)'

Combining (1), (2), (3) and (4), we have decided that

8(0X,Y) = —g(X,9Y).

Putting X =Y =e¢;;i=1,2,3,...,2n+ 1 in the above equa-

tion, then we conclude that

g(9ei,ei) =0. 19)

Corollary I11.1. /2] On a contact metric manifold M 2+l ghe

relation dn = 0 holds.

By the Corollary IIL.1, we see

0=dn = —divE = -X"g(V,E e). (20)

From the equations (8) and (20), we get

I g(er ) — X7 g (dei ) — X7 g(dhes,e;)
—£7 ' (ei)glei, §) =0. (21)

In virtue of (19) and (21), it implies that

o = g(Phe;,e;) =2n. (22)

The above discussion help us to state the following theo-

rem:

Theorem III.1. Any contact metric manifold o = g(Qhe;, e;)
is equal to zero, but the new contact metric manifolds (Barman

manifolds) a = g(Phe;, e;) is equal to 2n.

Now contraction X from (17) and using (22), it can be easily

seen that

S(X,&) =2nm(X), (23)

where S be the Ricci tensor of M.
Therefore, considering all the cases we can state the follow-

ing proposition:

Proposition II1.2. Under the same assumption as Proposi-
tion I1.1

(i) RX,Y)G = n(Y)oX —n(Y)hoX —1(X)9Y +n(X)heY,
(i) R(§,Y)E = =Y + oY,

(iii) N(R(X,Y)Z) = n(Y)g(h¢X,Z) — n(Y)g(¢X,2) +
n(X)g(¢Y,Z) —n(X)g(h9Y,2),

(iv) S(X, &) = 2nn(X).

Example III.1. We consider the 5-dimensional manifold M =
{(x,¥,2,u,v) € R}, where (x,y,z,u,v) are the standard coor-
dinate in R°.

We choose the vector fields

d d d d d

% 62:(97))7 e3:e7v&—z, es=e

—V
9 -9
ou’ T o

e =

which are linearly independent at each point of M.
Let g be the Riemannian metric defined by
g(ei7ej) = 07 l 75 j7 l7.] = 17273a4’75

and

gler,er) =gler,en) = g(es,e3) = g(es,eq) = g(es,es) = 1.



Let 1 be the 1-form defined by N(Z) = g(Z,es), for any
A= MZnJrl-

Let ¢ and h are tensor field defined by
Oe| = e, per = —ey, Pe3 =ey, Pes = —e3, Ppes =0
and
hey = —ey, hepy = —ey, hey = —e3, heqy = —ey, hes =0.

Using the linearity of ¢, h and g, we have n(es) = 1,
62(2) = ~Z+ 1(Z)es, 4(0Z,0U) = 4(Z,U) + n(Z)n(U),
WZ=7Z-n(Z)esand g(hZ,hU) = g(Z,U) —n(Z)n(U), for
any U,Z € M*"\. Thus, for es =&, M(¢,&,1n,8) defines an
almost contact metric manifold.

Then we have

le1,e2] = [e1,e3] = [e1,e4] = [e1,e5] = [e2,e3] =0,

lea,e5] = es, [e2,e4] = [e2,e5] = [e3,e4] =0, [e3,e5] =e3.

The Riemannian connection V of the metric tensor g is

given by Koszul’s formula which is given by

28(VxY,Z2) = Xg(Y,Z) +Yg(X,Z) - Zg(X,Y) — (X, [V, Z])

+8(Y,[X,Z]) +8(Z,[X,Y)).

Taking es = & and using Koszul’s formula we get the fol-

lowing

Vee1 =0, Ve er =0, Vo e3=0, Vo, e4 =0, Vg e5=0,

Ve,e1 =0, Ve,e0 =0, Vye3=0, Ve =0, Vo5 =0,

Ve381 :07 V€3e2207 V63e3:O; Ve3e4:O7 V€3e5:e37

V6461 = 07 V€4e2 = 07 V64e3 = 07 V€4€4 = 07 V€4es = 847

V€5€1 = 07 VESeZ = 07 V€Se3 = —es3, V65e4 = —é4, VESeS =0.

In view of the above relations, we see that Vx& = X —
9X — 9hX —n(X)E and (Vx9)(Y) = —n(¥)X — (¥ )X —
NY)PX +g(X.Y)E+g(hX,Y)E +g(9X,Y)E, foralles =E.
Therefore the manifold is another special type almost con-

tact metric manifold (Barman manifold) with the structure

(¢7§?n7g)'

IV. n-EINSTEIN MANIFOLD

Definition IV.1. In an almost contact metric manifold, if the
Ricci tensor (S) satisfies

S(X,Y) = ag(X,Y) +bn(X)n(Y), 24)

where a and b are scalar functions, then the manifold is called

an N-Einstein manifold.
Putting ¥ = & in (24) and using (1) and (4), we derived that
S(X,8) = (a+b)n(X). (25)
Making from (23) and (25), we calculate that
a+b=2n.

This leads to the following theorem:

Theorem IV.1. Any contact metric manifold M***" is an 1-
Einstein manifold, for a+b = 2n. Similarly, if the new contact
metric manifold (Barman manifold) under the assumption as
the (7) and (8) is also n-Einstein manifold,then we get a+b =
2n.

V. CONCIRCULAR CURVATURE TENSOR

A transformation of an 2n + 1-dimensional Riemannian
manifold M, which transforms every geodesic circle of M into
a geodesic circle, is called a concircular transformation ([8],

[14] ). A concircular transformation is always a conformal



transformation [8]. Here geodesic circle means a curve in M
whose first curvature is constant and whose second curvature
is identically zero. Thus the geometry of concircular transfor-
mations, i.e., the concircular geometry, is a generalization of
inversive geometry in the sense that the change of metric is
more general than that induced by a circle preserving diffeo-
morphism (see also [1]). An interesing invariant of a concir-
cular transformation is the concircular curvature tensor W. It

is defined by ([14], [15])

W(X,Y)Z=R(X,Y)Z— 5 [2(Y,Z)X —g(X,Z)Y].(26)

,
2n(2n+

where X, Y, Z on M and W is the concircular curvature
tensor and r is the scalar curvature respectively. Riemannian
manifolds with vanishing concircular curvature tensor are of

constant curvature. Thus the concircular curvature tensor is

a measure of the failure of a Riemannian manifold to be of

constant curvature.

Definition V.1. A new contact metric manifolds (Barman
manifolds) is said to be &-concircularly flat if W(X,Y)& =0,
where X,Y € x(M).

Putting Z = & in (26) and using (4) and (23), we have

r

W(X,Y)E =R(X,Y)E — m

[S(ng)X - S(X’ é)Y} ~(27)

If R(X,Y)E =0, then W(X,Y)E =0.
In view of above discussions we can state the following the-

orem:

Theorem V.1. A new contact metric manifold (Barman man-

ifold) is &-concircularly flat if R(X,Y )& vanishes.

[1] D. E. Blair, Inversion theory and conformal mapping, Stu-
dent Mathematical Library 9, American Mathematical Society,
2000.

[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic
Manifolds (Second Edition), Birkhauser Progress in Mathemat-
ics, 203(2010), page-47, 85, 111.

[3] S.S. Eum, On Kaehlerian hypersurfaces in almost contact met-
ric spaces, Tensor N. S., 20(1969), 37-44.

[4] J. Gray, Some global properties of contact structures, Ann. of
Math., 69(1959), 421-450

[5] A. Gray and L. M. Hervella, The sixteen classes of almost Her-
mitian manifolds and their linear invariants, Ann. Mat. Pura
Appl., 123(1980), 35-58.

[6] D. Janssens and L. Vanhecke, Almost contact structures and
curvature tensors, Kodai Math. J., 4(1981), 1-27.

[7] K. Kenmotsu, A class of almost contact Riemannian manifolds,

Tiohoku Math.J., 24(1972), 93-103.

[8] W. Kuhnel, Conformal transformations between Einstein
spaces, Conformal geometry (Bonn, 1985/1986), 105-146, As-
pects Math., E12, Vieweg, Braunschweig, 1988.

[9] J. C. Marrero, The local structure of trans-Sasakian manifolds,
Ann. Mat. Pura Appl., 162(1992), 77-86.

[10] V. A. Mirzoyan, structure theorems on Riemannian Ricci-semi-
symmetric spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat.,
06(1992), 80-89.

[11] J. A. Oubina, New classes of almost contact metric structures,
Publicationes Mathematicae Debrecen, 32(1985), 187-193.

[12] N. S. Sinjukov, Geodesic maps on Riemannian spaces (Rus-
sian), Publishing House "Nauka", Moscow, 1979.

[13] Y. Tashiro, On contact structures of hypersurfaces in complex
manifolds I, Tohoku Math. J., 15(1963), 62-78.

[14] K. Yano, Concircular geometry I. Concircular transformations,
Proc. Imp. Acad. Tokyo 16 (1940), 195-200.

[15] K. Yano and S. Bochner, Curvature and Betti numbers, Annals

of Mathematics studies, 32(Princeton university press) (1953).



