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We propose quantum cryptography based on an algorithm of determining a function. The security of our

cryptography is based on the Ekert 1991 protocol, that is, we use an entangled state. Eve must destroy the

entangled state. Consider a function. Alice knows all the mappings concerning the function. Bob knows none

of them. His aim is of obtaining all of them without Eve’s attack. In classical case, Bob needs some queries. In

quantum case, Bob needs just a query. By measuring the single entangled state, which is sent by Alice, Bob can

obtain all the mappings concerning the function, simultaneously. This is faster than classical cryptography.
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I. INTRODUCTION

Among a number of algorithmic developments, we can

mention the following. The Bernstein–Vazirani algorithm [1,

2], which was published in 1993, can be considered an ex-

tension of the Deutsch–Jozsa algorithm [3–5]. In 1994, algo-

rithms were proposed by Simon [6] and by Shor [7]. In 1996,

Grover [8] presented strong arguments for exploring the com-

putational possibilities offered by quantum mechanics.

In this contribution, we propose quantum cryptography

based on an algorithm of determining a function. The security

of our cryptography is based on the Ekert 1991 protocol [9],

that is, we use an entangled state. Eve must destroy the en-

tangled state. Eve means an eavesdropper. Eve can change a

secret function to another one whenever by entangled states

Bob and Alice can observe that Eve dropped in. For short,

later we will refer to this situation simply as “Eve’s attack”.

Consider a function. Alice knows all the mappings concern-

ing the function. Bob knows none of them. His aim is of ob-

taining all of them without Eve’s attack. In classical case, Bob

needs some queries. In quantum case, Bob needs just a query.

By measuring the single entangled state, which is sent by Al-

ice, Bob can obtain all the mappings concerning the function,

simultaneously. This is faster than classical cryptography.

II. QUANTUM CRYPTOGRAPHY THROUGH AN

ALGORITHM OF DETERMINING A FUNCTION USING

QUBIT SYSTEMS

Quantum superposition is a fundamental feature of many

quantum algorithms. It allows quantum computers to evaluate

the mappings of a function f (x) for many different x simulta-
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neously. Suppose

f : {0,1}→ {0,1} (1)

is a function. Alice knows it. Bob’s aim is of determining all

the mappings

f (0) =?, f (1) =?, (2)

that is, f (x) itself without Eve’s attack. In classical case Bob

requires 2 queries. In quantum case Bob requires just a query.

This is faster than classical cryptography, which would require

at least 2 queries.

Alice can select one of the 4 functions because of the com-

binations of the mappings. Later we introduce a parameter

i = 0,1,2,3 for the functions.

Let us discuss our quantum cryptography. We introduce the

transformation O f defined by the map

O f |x〉| j〉= |x〉|( f (x)+ j) mod 2〉. (3)

From the map O f , we insert an imaginary number i and we

can define the following formulas:

O f |0〉(|0〉− i|1〉)/
√

2 =+|0〉(| f (0)〉− i| f (0)+1〉)/
√

2

=

|0〉(|0〉− i|1〉)/
√

2 if f (0) = 0,

−i|0〉(|0〉+ i|1〉)/
√

2 if f (0) = 1.
(4)

O f |1〉(|0〉− |1〉)/
√

2 =+|1〉(| f (1)〉− | f (1)+1〉)/
√

2

=

|1〉(|0〉− |1〉)/
√

2 if f (1) = 0,

−|1〉(|0〉− |1〉)/
√

2 if f (1) = 1.
(5)

Notice

(O f )
2|x〉| j〉= |x〉|(2 f (x)+ j) mod 2〉= |x〉| j〉. (6)

Therefore, the map O f is a cyclic transformation. Here, we

define the normalized input state (〈ψ0|ψ0〉= 1) as follows:

|ψ0〉= α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
,

|α|2 + |β |2 = 1,α 6= 0,β 6= 0. (7)

Let us introduce a parameter i. Later, we see all the infor-

mation for fi is imbedded into a single output entangled state.

This means Bob gets all the information for fi when he knows

the single output entangled state. This is the key of our quan-

tum cryptography.

Alice applies O fi ,(i = 0,1,2,3) to |ψ0〉, O fi |ψ0〉 = |ψ1〉i,

the output entangled state is one of 4 cases:

|ψ1〉0 = α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
then f0(0) = 0, f0(1) = 0, (8)

|ψ1〉1 = α|0〉
[
|0〉− i|1〉√

2

]
−β |1〉

[
|0〉− |1〉√

2

]
then f1(0) = 0, f1(1) = 1, (9)

|ψ1〉2 =−iα|0〉
[
|0〉+ i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
then f2(0) = 1, f2(1) = 0, (10)

|ψ1〉3 =−iα|0〉
[
|0〉+ i|1〉√

2

]
−β |1〉

[
|0〉− |1〉√

2

]
then f3(0) = 1, f3(1) = 1, (11)

where these equations have a property that the relation be-

tween each equation and the condition after “then” is regarded

as a “if and only if” condition since we herein process all of

the operations only under the cyclic transformation. So, the

conditions after “then” are regarded as the results.

So, by measuring an entangled state |ψ1〉i, which is sent

by Alice, Bob may determine all the 2 mappings of fi(x) for

all x(= 0,1), simultaneously. This is very interesting indeed:

our quantum cryptography gives us the ability to transmit a

perfect property of fi(x), namely, fi(x) itself without Eve’s

attack. This is faster than classical cryptography, which would

require at least 2 queries.

Our cryptography is as follows:

• Alice randomly selects a function fi.

• She applies O fi to |ψ0〉 in giving an entangled state

|ψ1〉i.

• She sends the entangled state |ψ1〉i to Bob.

• Bob compares (by measurement) the result state |ψ1〉i
with the input state and obtain all the two mappings
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concerning the function fi.

• Bob realizes what function Alice selects.

• Alice and Bob compare their functions (subset of the

results).

• If Eve’s attack exists, Alice and Bob select the different

function.

• If Eve’s attack does not exist, Alice and Bob select the

same function.

Alice and Bob perform the protocol described above many

times of obtaining enough secret keys (functions).

A. Concrete Example

We present a concrete example to understand our quantum

cryptography fully and naturally. Let us consider the case

where Alice randomly selects a function f1. Bob wants to

know all the following mappings

f (0) =?, f (1) =?, (12)

without Eve’s attack. In classical case, Bob requires 2 evalua-

tions. In quantum case, Bob requires just a query.

Alice prepares the following input entangled state:

|ψ0〉= α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
. (13)

Next, Alice applies O f1 to |ψ0〉, O f1 |ψ0〉= |ψ1〉1. She has the

following output entangled state:

|ψ1〉1 = α|0〉
[
|0〉− i|1〉√

2

]
−β |1〉

[
|0〉− |1〉√

2

]
. (14)

Bob asks what quantum output entangled state Alice has.

Then Bob obtains all the mappings of f1(x), simultaneously:

f1(0) = 0, f1(1) = 1. (15)

Bob realizes that Alice selects f1(x). Alice and Bob compare

their functions (subset of the results). If Eve’s attack exists,

Alice and Bob select the different function. If Eve’s attack

does not exist, Alice and Bob select the same function. Alice

and Bob perform the protocol described above many times of

obtaining enough secret keys (functions).

Again, this is faster than classical cryptography, which

would require at least 2 evaluations. Likewise, Alice can se-

lect the 4 combinations of the mappings. That is, our argu-

mentations are true for each a parameter i.

III. QUANTUM CRYPTOGRAPHY THROUGH AN

ALGORITHM OF DETERMINING A FUNCTION USING

QUTRIT SYSTEMS

Quantum superposition is a fundamental feature of many

quantum algorithms. It allows quantum computers to evaluate

the mappings of a function f (x) for many different x simulta-

neously. Suppose

f : {0,1,2}→ {0,1} (16)

is a function. Alice knows it. Bob’s aim is of determining all

the mappings

f (0) =?, f (1) =?, f (2) =?, (17)

that is, f (x) itself without Eve’s attack. In classical case Bob

requires 3 queries. In quantum case Bob requires just a query.

This is faster than classical cryptography, which would require

at least 3 queries.

Alice can select one of the 8 functions because of the com-

binations of the mappings. Later we introduce a parameter

i = 0,1,2, ...,7 for the functions.

Let us discuss our quantum cryptography using qutrit sys-

tems. We introduce the transformation O f defined by the map

O f |x〉| j〉= |x〉|( f (x)+ j) mod 3〉. (18)

From the map O f , we insert an imaginary number i and we

can define the following formulas:

O f |0〉(|0〉− i|1〉)/
√

2 =+|0〉(| f (0)〉− i| f (0)+1〉)/
√

2

=

|0〉(|0〉− i|1〉)/
√

2 if f (0) = 0,

|0〉(|1〉− i|2〉)/
√

2 if f (0) = 1.
(19)

O f |1〉(|0〉− |1〉)/
√

2 =+|1〉(| f (1)〉− | f (1)+1〉)/
√

2

=

|1〉(|0〉− |1〉)/
√

2 if f (1) = 0,

|1〉(|1〉− |2〉)/
√

2 if f (1) = 1.
(20)
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We define a quantum state in a three-dimensional space |φ〉 as

follows:

|φ〉= 1√
3
(ω3|0〉+ω

2|1〉+ω|2〉), (21)

where ω = e2πi/3. We have the following formula by the phase

kick-back formation:

O f |2〉|φ〉= ω
f (2)|2〉|φ〉. (22)

In fact, from the map O f , we can define the following formu-

las:

O f |2〉
1√
3
(ω3|0〉+ω

2|1〉+ω|2〉)

= |2〉 1√
3
(ω3| f (2)〉+ω

2| f (2)+1〉+ω| f (2)+2〉)

=

|2〉
1√
3
(ω3|0〉+ω2|1〉+ω|2〉) if f (2) = 0,

ω|2〉 1√
3
(ω3|0〉+ω2|1〉+ω|2〉) if f (2) = 1.

(23)

Notice

(O f )
3|x〉| j〉= |x〉|(3 f (x)+ j) mod 3〉= |x〉| j〉. (24)

Therefore, the map O f is a cyclic transformation. Here, we

define the normalized input state (〈ψ0|ψ0〉= 1) as follows:

|ψ0〉= α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ γ|2〉|φ〉,

|α|2 + |β |2 + |γ|2 = 1,α 6= 0,β 6= 0,γ 6= 0. (25)

Let us introduce a parameter i. Later, we see all the infor-

mation for fi is imbedded into a single output entangled state.

This means Bob gets all the information for fi when he knows

the single output entangled state. This is the key of our quan-

tum cryptography.

Alice applies O fi ,(i = 0,1, ...,7) to |ψ0〉, O fi |ψ0〉 = |ψ1〉i,

the output entangled state is one of 8 cases:

|ψ1〉0 = α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ γ|2〉|φ〉

then f0(0) = 0, f0(1) = 0, f0(2) = 0,

(26)

|ψ1〉1 = α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ωγ|2〉|φ〉

then f1(0) = 0, f1(1) = 0, f1(2) = 1,

(27)

|ψ1〉2 = α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|1〉− |2〉√

2

]
+ γ|2〉|φ〉

then f2(0) = 0, f2(1) = 1, f2(2) = 0,

(28)

|ψ1〉3 = α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|1〉− |2〉√

2

]
+ωγ|2〉|φ〉

then f3(0) = 0, f3(1) = 1, f3(2) = 1,

(29)

|ψ1〉4 = α|0〉
[
|1〉− i|2〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ γ|2〉|φ〉

then f4(0) = 1, f4(1) = 0, f4(2) = 0,

(30)

|ψ1〉5 = α|0〉
[
|1〉− i|2〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ωγ|2〉|φ〉

then f5(0) = 1, f5(1) = 0, f5(2) = 1,

(31)

|ψ1〉6 = α|0〉
[
|1〉− i|2〉√

2

]
+β |1〉

[
|1〉− |2〉√

2

]
+ γ|2〉|φ〉

then f6(0) = 1, f6(1) = 1, f6(2) = 0,

(32)

|ψ1〉7 = α|0〉
[
|1〉− i|2〉√

2

]
+β |1〉

[
|1〉− |2〉√

2

]
+ωγ|2〉|φ〉

then f7(0) = 1, f7(1) = 1, f7(2) = 1,

(33)

where these equations have a property that the relation be-

tween each equation and the condition after “then” is regarded

as a “if and only if” condition since we herein process all of

the operations only under the cyclic transformation. So, the

conditions after “then” are regarded as the results.

So, by measuring an entangled state |ψ1〉i, which is sent by

Alice, Bob may determine all the 3 mappings of fi(x) for all

x(= 0,1,2), simultaneously. This is very interesting indeed:

our quantum cryptography gives us the ability to transmit a
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perfect property of fi(x), namely, fi(x) itself without Eve’s

attack. This is faster than classical cryptography, which would

require at least 3 queries.

Our cryptography is as follows:

• Alice randomly selects a function fi.

• She applies O fi to |ψ0〉 in giving an entangled state

|ψ1〉i.

• She sends the entangled state |ψ1〉i to Bob.

• Bob compares (by measurement) the result state |ψ1〉i
with the input state and obtain all the three mappings

concerning the function fi.

• Bob realizes what function Alice selects.

• Alice and Bob compare their functions (subset of the

results).

• If Eve’s attack exists, Alice and Bob select the different

function.

• If Eve’s attack does not exist, Alice and Bob select the

same function.

Alice and Bob perform the protocol described above many

times of obtaining enough secret keys (functions).

A. Concrete Example

We present a concrete example to understand our quantum

cryptography fully and naturally. Let us consider the case

where Alice randomly selects a function f1. Bob wants to

know all the following mappings

f (0) =?, f (1) =?, f (2) =?, (34)

without Eve’s attack. In classical case, Bob requires 3 evalua-

tions. In quantum case, Bob requires just a query.

Alice prepares the following input entangled state:

|ψ0〉= α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ γ|2〉|φ〉.

(35)

Next, Alice applies O f1 to |ψ0〉, O f1 |ψ0〉= |ψ1〉1. She has the

following output entangled state:

|ψ1〉1 = α|0〉
[
|0〉− i|1〉√

2

]
+β |1〉

[
|0〉− |1〉√

2

]
+ωγ|2〉|φ〉.

(36)

Bob asks what quantum output entangled state Alice has.

Then Bob obtains all the mappings of f1(x), simultaneously:

f1(0) = 0, f1(1) = 0, f1(2) = 1. (37)

Bob realizes that Alice selects f1(x). Alice and Bob compare

their functions (subset of the results). If Eve’s attack exists,

Alice and Bob select the different function. If Eve’s attack

does not exist, Alice and Bob select the same function. Alice

and Bob perform the protocol described above many times of

obtaining enough secret keys (functions).

Again, this is faster than classical cryptography, which

would require at least 3 evaluations. Likewise, Alice can se-

lect the 8 combinations of the mappings. That is, our argu-

mentations are true for each a parameter i.

IV. QUANTUM CRYPTOGRAPHY THROUGH AN

ALGORITHM OF DETERMINING A FUNCTION USING

QUDIT SYSTEMS

Quantum superposition is a fundamental feature of many

quantum algorithms. It allows quantum computers to evaluate

the mappings of a function f (x) for many different x simulta-

neously. Suppose

f : {0,1,2, ...,d−1}→ {0,1} (38)

is a function. Alice knows it. Bob’s aim is of determining all

the mappings

f (0) =?, f (1) =?, f (2) =?, ..., f (d−1) =?, (39)

that is, f (x) itself without Eve’s attack. In classical case Bob

requires d queries. In quantum case Bob requires just a query.

This is faster than classical cryptography, which would require

at least d queries.

Alice can select one of the 2d functions because of the com-

binations of the mappings. Later we introduce a parameter

i = 0,1,2, ...,2d−1 for the functions.
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Let us discuss our quantum cryptography using qudit sys-

tems. We introduce the transformation O f defined by the map

O f |x〉| j〉= |x〉|( f (x)+ j) mod d〉. (40)

We define a quantum state in a d-dimensional space |φd〉 as

follows:

|φd〉=
1√
d
(ωd |0〉+ω

d−1|1〉+ ...+ω|d−1〉), (41)

where ω = e2πi/d . We have the following formula by the

phase kick-back formation:

O f |x〉|φd〉= ω
f (x)|x〉|φd〉. (42)

Notice

(O f )
d |x〉| j〉= |x〉|(d f (x)+ j) mod d〉= |x〉| j〉. (43)

Therefore, the map O f is a cyclic transformation. Here, we

define the normalized input state (〈ψ0|ψ0〉= 1) as follows:

|ψ0〉=
d

∑
n=1

αn|n−1〉|φn〉,

d

∑
n=1
|αn|2 = 1,α1 6= 0,α2 6= 0, ...,αd 6= 0. (44)

Let us introduce a parameter i. Later, we see all the infor-

mation for fi is imbedded into a single output entangled state.

This means Bob gets all the information for fi when he knows

the single output entangled state. This is the key of our quan-

tum cryptography.

Alice applies O fi ,(i = 0,1, ...,2d − 1) to |ψ0〉, O fi |ψ0〉 =

|ψ1〉i, the output entangled state is one of 2d cases:

|ψ1〉i =
d

∑
n=1

ω
fi(n−1)

αn|n−1〉|φn〉

then fi(n−1) = 0 or 1, (45)

where this equation has a property that the relation between

the equation and the condition after “then” is regarded as a “if

and only if” condition since we herein process all of the oper-

ations only under the cyclic transformation. So, the conditions

after “then” are regarded as the results.

So, by measuring an entangled state |ψ1〉i, which is sent

by Alice, Bob may determine all the d mappings of fi(x) for

all x(= 0,1,2, ...,d−1), simultaneously. This is very interest-

ing indeed: our quantum cryptography gives us the ability to

transmit a perfect property of fi(x), namely, fi(x) itself with-

out Eve’s attack. This is faster than classical cryptography,

which would require at least d queries.

Our cryptography is as follows:

• Alice randomly selects a function fi.

• She applies O fi to |ψ0〉 in giving an entangled state

|ψ1〉i.

• She sends the entangled state |ψ1〉i to Bob.

• Bob compares (by measurement) the result state |ψ1〉i
with the input state and obtain all the d mappings con-

cerning the function fi.

• Bob realizes what function Alice selects.

• Alice and Bob compare their functions (subset of the

results).

• If Eve’s attack exists, Alice and Bob select the different

function.

• If Eve’s attack does not exist, Alice and Bob select the

same function.

Alice and Bob perform the protocol described above many

times of obtaining enough secret keys (functions).

A. Concrete Example

We present a concrete example to understand our quantum

cryptography fully and naturally. Let us consider the case

where Alice randomly selects a function f1. Bob wants to

know all the following mappings

f (0) =?, f (1) =?, f (2) =?, ..., f (d−1) =?, (46)

without Eve’s attack. In classical case, Bob requires d evalu-

ations. In quantum case, Bob requires just a query.

Alice prepares the following input entangled state:

|ψ0〉=
d

∑
n=1

αn|n−1〉|φn〉. (47)
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Next, Alice applies O f1 to |ψ0〉, O f1 |ψ0〉= |ψ1〉1. She has the

following output entangled state:

|ψ1〉1 =
d

∑
n=1

ω
f1(n−1)

αn|n−1〉|φn〉

then f1(d−1) = 1, f1(n) = 0,n = 0,1,2, ...,d−2.

(48)

Bob asks what quantum output entangled state Alice has.

Then Bob obtains all the mappings of f1(x), simultaneously:

f1(0) = 0, f1(1) = 0, f1(2) = 0, ..., f1(d−1) = 1. (49)

Bob realizes that Alice selects f1(x). Alice and Bob compare

their functions (subset of the results). If Eve’s attack exists,

Alice and Bob select the different function. If Eve’s attack

does not exist, Alice and Bob select the same function. Alice

and Bob perform the protocol described above many times of

obtaining enough secret keys (functions).

Again, this is faster than classical cryptography, which

would require at least d evaluations. Likewise, Alice can se-

lect the 2d combinations of the mappings. That is, our argu-

mentations are true for each a parameter i.

V. CONCLUSIONS

In conclusion, we have proposed quantum cryptography

based on an algorithm of determining a function. The security

of our cryptography has been based on Ekert 91 protocol, that

is, we use an entangled state. Eve must have destroyed the

entangled state. Consider a function. Alice has known all the

mappings concerning the function. Bob has known none of

them. His aim has been of obtaining all of them without Eve’s

attack. In classical case, Bob needs some queries. In quantum

case, Bob needs just a query. By measuring the single entan-

gled state, which is sent by Alice, Bob can have obtained all

the mappings concerning the function, simultaneously. This

has been faster than classical cryptography.
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